SPMR: A Family of Saddle-Point Minimum Residual Solvers

Contact Information

Ron Estrin
CME PhD Candidate
Stanford University
restrin@stanford.edu

Ron Estrin and Chen Greif

Institute for Computational and Mathematical Engineering Stanford University

Contact Information

The Problem

We are interested in solving

$$
\mathcal{K}\left[\begin{array}{c}
x \tag{1}\\
y
\end{array}\right]=\left[\begin{array}{cc}
A & G_{1}^{T} \\
G_{2} & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
f \\
g
\end{array}\right],
$$

where $A \in \mathbb{R}^{n \times n}, G_{1}, G_{2} \in \mathbb{R}^{m \times n}, f \in \mathbb{R}^{n}$, and $g \in \mathbb{R}^{m}$, with $m<n$.
We design iterative methods where we require that either

- A is efficiently invertible
- can efficiently project to null-space of G_{1}, G_{2}

Dual Saddle-Point System

For $g=0$, the dual-saddle point system related to (1) is

$$
\mathcal{K}_{D}\left[\begin{array}{l}
p \tag{2}\\
q
\end{array}\right]=\left[\begin{array}{cc}
A & A H_{2} \\
A H_{1}^{T} & 0
\end{array}\right]\left[\begin{array}{l}
p \\
q
\end{array}\right]=\left[\begin{array}{c}
0 \\
-H_{1}^{T} f
\end{array}\right],
$$

where $G_{1} H_{1}=G_{2} H_{2}=0$ are null-space operators.
There exists a solution to (2) such that $x=H_{2} q=-p$.
SPMR Family Tree
We have a family of 4 methods, depending on the properties of the problem.

Figure: Various versions of SPMR
A is efficiently invertible: right branch (-SC) Efficient projection to $\operatorname{ker}\left(G_{1}\right)$, $\operatorname{ker}\left(G_{2}\right)$: left branch (-NS)

For orthogonal search bases: right sub-branch (SPMR) For bi-orthogonal search bases: left sub-branch (SPQMR)

SIMBA and SIMBO

Lanczos-like process to construct bases $U_{k}, V_{k}, W_{k}, Z_{k}$ to project to smaller saddle-point matrix

SIMBA: SIMultaneous Bidiagonalization via A-conjugacy $\quad \Longrightarrow$ SPMR methods SIMBO: SIMultaneous Bidiagonalization via bi-Orthogonality \Longrightarrow SPQMR methods

SIMBA
Relationships deriving process:

$$
\begin{aligned}
G_{1}^{T} V_{k} & =A U_{k} J_{k} L_{k}^{T}, & W_{k}^{T} A U_{k} & =J_{k}, \\
G_{1} W_{k} & =V_{k+1} B_{k}, & V_{k}^{T} V_{k} & =I, \\
G_{2}^{T} Z_{k} & =A^{T} W_{k} J_{k} M_{k}^{T}, & Z_{k}^{T} Z_{k} & =I, \\
G_{2} U_{k} & =Z_{k+1} C_{k}, & &
\end{aligned}
$$

Description of the Methods

1. Apply SIMBA/SIMBO to \mathcal{K} or \mathcal{K}_{D}
2. Use recurrences to solve reduced system and update approximate solution
3. Use recurrences to bound residual norm

	-SC	-NS
required operation	A-solve	null-space projection of G_{1}, G_{2}
process applied to	\mathcal{K}	\mathcal{K}_{D}
depends on spectrum of	$S=G_{2} A^{-1} G_{1}^{T}$	$R=H_{1}^{T} A H_{2}$

Table: Comparison of -SC and -NS versions.

	SPMR	SPQMR
monotonic residual	\checkmark	\times
short recurrence	\checkmark	\checkmark
bidiagonalization procedure	SIMBA	SIMBO
depends on	singular values of T	eigenvalues of T
mathematically equivalent to	USYMQR on T	QMR on T

Table: Comparison of properties of SPMR vs. SPQMR. The matrix T denotes either the Schur complement (S) or the generalized reduced Hessian (R)

Numerical Experiments

SPMR-SC vs. USYMQR

We compare applying SPMR-SC to (1) with $f=0$ and USYMQR [4] applied to $S y=-g$. In exact arithmetic every iteration would be the same.

Figure: $\left\|r_{k}\right\|$.
Numerically, SPMR-SC achieves more digits at convergence han USYMQR due to conditioning issues

Systems from Interior-Point Methods

3×3 block system arising from interior-point methods:

$$
\left[\begin{array}{ccc}
H & -I & J^{T} \\
-Z & -X & 0 \\
I & 0 & 0
\end{array}\right]\left[\begin{array}{c}
\Delta x \\
\Delta z \\
b-J x
\end{array}\right]=\left[\begin{array}{c}
-c-H x+J^{T} y+z \\
b-
\end{array}\right]
$$

Apply several iterative methods on ill-conditioned system arising from polygon 100 from COPS [1]

References
[1] Alexander S Bondarenko, David M Bortz, and Jorge J Moré. Cops: Large-scale onlinearly constrained optimization problems. Technical report, Argonne National Lab. IL (US) 2000
[2] R. Estrin and C. Greif. SPMR: A family of saddle-point minimum residual solvers SIAM J. Sci. Comput. 2018, accepted for publication.
[3] Roland W. Freund and Noël M. Nachtigal. QMR: a quasi-minimal residual method for non-Hermitian linear systems. Numerische Mathematik, 60(1):315-339, 1991
[4] M. A. Saunders, H. D. Simon, and E. L. Yip. Two conjugate-gradient-type methods for unsymmetric linear equations. SIAM J. Numer. Anal.

