SPMR: A Family of Saddle-Point Minimum Residual Solvers
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The Problem SIMBA and SIMBO Numerical Experiments
We are interested in solving Lanczos-like process to construct bases Uy, Vi, Wi, Z;. to project to smaller saddle-point matrix. SPMR-SC vs. USYMQR

. A GT [z [f — We compare applying SPMR-SC to (1) with f = 0 and

K Y = Gy 0|y = ql’ (1) RT Jk Lk. USYMQR [4] applied to Sy = —g. In exact arithmetic,
— every iteration would be the same.
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For g = 0, the dual-saddle point system related to (1) is T | | | _
p A A H2 p O | 10 0 50 100 |te1r:t(i)on 200 250 300
Kp gl = AHT 0 ||g = —HTf] (2) SIMBA: SIMultaneous Bidiagonalization via A-conjugacy —> SPMR methods Figure: |||

where Gy Hy = GoH, = 0 are nuI_—space opera;cors SIMBO: SIMultaneous Bidiagonalization via bi-Orthogonality —> SPQMR methods

Numerically, SPMR-SC achieves more digits at convergence

SIMBA SIMBO than USYMQR due to conditioning issues.

There exists a solution to (2) such that x = Hyqg = —p. - Systems from Interior-Point Methods
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We have a family of 4 methods, depending on the properties G1Wy = Vi1 B, ViVie=1, G1Wi = Zj+1 By, 2 Vi =1, JZ OX 8 iz XbZ Jz
of the problem. Gy 7, = A"W,. .M}, 7z, =1, G3 7, = A"WJ. M | =9 c—T1e
GolUy = Z1.11Ch, Gy = Vi 1Ol Apply several iterative methods on ill-conditioned system
arising from polygon100 from COPS [1].
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