SPMR: A Family of Saddle-Point Minimum Residual Solvers

Contact Information

Ron Estrin ICME PhD Candidate, Stanford University restrin@stanford.edu

The Problem

We are interested in solving

$$\mathcal{K} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} A & G_1^T \\ G_2 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} f \\ g \end{bmatrix}, \qquad (1)$$

where $A \in \mathbb{R}^{n \times n}$, $G_1, G_2 \in \mathbb{R}^{m \times n}$, $f \in \mathbb{R}^n$, and $g \in \mathbb{R}^m$, with m < n.

We design iterative methods where we require that either:

- A is efficiently invertible
- can efficiently project to null-space of G_1 , G_2

Dual Saddle-Point System

For q = 0, the dual-saddle point system related to (1) is

$$\mathcal{K}_D \begin{bmatrix} p \\ q \end{bmatrix} = \begin{bmatrix} A & AH_2 \\ AH_1^T & 0 \end{bmatrix} \begin{bmatrix} p \\ q \end{bmatrix} = \begin{bmatrix} 0 \\ -H_1^T f \end{bmatrix}, \quad (2)$$

where $G_1H_1 = G_2H_2 = 0$ are null-space operators.

There exists a solution to (2) such that $x = H_2q = -p$.

SPMR Family Tree

We have a family of 4 methods, depending on the properties of the problem.

A is efficiently **invertible**: **right** branch (–SC) Efficient **projection** to $ker(G_1)$, $ker(G_2)$: left branch (-NS)

For **orthogonal** search bases: **right** sub-branch (SPMR) For **bi-orthogonal** search bases: **left** sub-branch (SPQMR)

Ron Estrin and Chen Greif

Institute for Computational and Mathematical Engineering Stanford University

SIMBA and SIMBO

Lanczos-like process to construct bases U_k, V_k, W_k, Z_k to project to smaller saddle-point matrix.

SIMBA: SIMultaneous Bidiagonalization via A-conjugacy SIMBO: SIMultaneous Bidiagonalization via bi-Orthogonality

SIMBA

Relationships deriving process:

- $G_1^T V_k = A U_k J_k L_k^T,$ $G_1 W_k = V_{k+1} B_k, \qquad \qquad V_k^T V_k = I,$ $G_2^T Z_k = A^T W_k J_k M_k^T,$ $G_2 U_k = Z_{k+1} C_k,$
- $W_k^T A U_k = J_k,$ $Z_k^T Z_k = I,$

SIMBO

Relationships deriving process

 $G_1^T V_k = A U_k J_k L_k^T,$ $G_1 W_k = \mathbf{Z}_{k+1} B_k,$ $G_2^T Z_k = A^T W_k J_k M_k^T,$ $G_2 U_k = V_{k+1} C_k,$

Description of the Methods

1. Apply SIMBA/SIMBO to \mathcal{K} or \mathcal{K}_D

2. Use recurrences to solve reduced system and update approximate solution 3. Use recurrences to bound residual norm

	–SC	–NS	
required operation	A-solve	null-space projection of C	
process applied to	\mathcal{K}	\mathcal{K}_D	
depends on spectrum of	$S = G_2 A^{-1} G_1^T$	$R = H_1^T A H_2$	
Table: Comparison of –SC and –NS versions.			

	SPMR	SPQM
monotonic residual	\checkmark	×
short recurrence	\checkmark	\checkmark
bidiagonalization procedure	SIMBA	SIMBO
depends on	singular values of T	eigenvalues
mathematically equivalent to	USYMQR on T	QMR on

Table: Comparison of properties of SPMR vs. SPQMR. The matrix T denotes either the Schur complement (S) or the generalized reduced Hessian (R)

Contact Information

Chen Greif Professor, University of British Columbia greif@cs.ubc.ca

Numerical Experiments

 \implies SPMR methods \implies SPQMR methods

s:
$$W_k^T A U_k = J_k,$$

 $Z_k^T V_k = I,$

SPMR-SC vs. USYMQR

We compare applying SPMR-SC to (1) with f = 0 and USYMQR [4] applied to Sy = -g. In exact arithmetic, every iteration would be the same.

Figure: $||r_k||$.

Numerically, SPMR-SC achieves more digits at convergence than USYMQR due to conditioning issues.

Systems from Interior-Point Methods

 3×3 block system arising from interior-point methods:

$$\begin{bmatrix} H & -I & J^T \\ -Z & -X & 0 \\ J & 0 & 0 \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta z \\ -\Delta y \end{bmatrix} = \begin{bmatrix} -c - Hx + J^Ty +$$

Apply several iterative methods on ill-conditioned system arising from polygon100 from COPS [1].

[1] Alexander S Bondarenko, David M Bortz, and Jorge J Moré. Cops: Large-scale nonlinearly constrained optimization problems. Technical report, Argonne

[2] R. Estrin and C. Greif. SPMR: A family of saddle-point minimum residual solvers. SIAM J. Sci. Comput., 2018, accepted for publication.

National Lab., IL (US), 2000.

- [3] Roland W. Freund and Noël M. Nachtigal. QMR: a quasi-minimal residual method for non-Hermitian linear systems. *Numerische Mathematik*, 60(1):315–339, 1991.
- [4] M. A. Saunders, H. D. Simon, and E. L. Yip. Two conjugate-gradient-type methods for unsymmetric linear equations. SIAM J. Numer. Anal., 25(4):927-940, 1988.

