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The Problem

We are interested in solving
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where A ∈ Rn×n, G1, G2 ∈ Rm×n, f ∈ Rn, and g ∈ Rm,
with m < n.
We design iterative methods where we require that either:

• A is efficiently invertible
• can efficiently project to null-space of G1, G2

Dual Saddle-Point System

For g = 0, the dual-saddle point system related to (1) is
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where G1H1 = G2H2 = 0 are null-space operators.

There exists a solution to (2) such that x = H2q = −p.

SPMR Family Tree

We have a family of 4 methods, depending on the properties
of the problem.
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Figure: Various versions of SPMR.

A is efficiently invertible: right branch (–SC)
Efficient projection to ker(G1), ker(G2): left branch (–NS)

For orthogonal search bases: right sub-branch (SPMR)
For bi-orthogonal search bases: left sub-branch (SPQMR)

SIMBA and SIMBO

Lanczos-like process to construct bases Uk, Vk,Wk, Zk to project to smaller saddle-point matrix.

SIMBA: SIMultaneous Bidiagonalization via A-conjugacy =⇒ SPMR methods
SIMBO: SIMultaneous Bidiagonalization via bi-Orthogonality =⇒ SPQMR methods
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Description of the Methods

1. Apply SIMBA/SIMBO to K or KD
2. Use recurrences to solve reduced system and update approximate solution
3. Use recurrences to bound residual norm

–SC –NS
required operation A-solve null-space projection of G1, G2
process applied to K KD

depends on spectrum of S = G2A
−1GT

1 R = HT
1 AH2

Table: Comparison of –SC and –NS versions.

SPMR SPQMR
monotonic residual X ×
short recurrence X X

bidiagonalization procedure SIMBA SIMBO
depends on singular values of T eigenvalues of T

mathematically equivalent to USYMQR on T QMR on T
Table: Comparison of properties of SPMR vs. SPQMR. The matrix T denotes either the Schur complement (S) or
the generalized reduced Hessian (R)

Numerical Experiments

SPMR-SC vs. USYMQR
We compare applying SPMR-SC to (1) with f = 0 and
USYMQR [4] applied to Sy = −g. In exact arithmetic,
every iteration would be the same.
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Figure: ‖rk‖.

Numerically, SPMR-SC achieves more digits at convergence
than USYMQR due to conditioning issues.
Systems from Interior-Point Methods
3× 3 block system arising from interior-point methods:
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Apply several iterative methods on ill-conditioned system
arising from polygon100 from COPS [1].
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