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Abstract

Despite the numerous applications of lattice reduction
(e.g., in MIMO systems, algebraic number theory and
lattice-based cryptography) and the close connection
between the Lenstra-Lenstra-Lovasz (LLL) algorithm
and column-pivoted QR factorizations (through gener-
alizing from permutations to unimodular transforms),
the well-established techniques for exploiting level 3
BLAS within Householder QR have not yet been ex-
tended. We therefore propose a novel right-looking
variant of a Householder-based LLL which both ac-
cumulates Householder transformations where possi-
ble and avoids redundant applications when the Lovasz
condition requires column swaps.
We provide benchmarks of the new scheme, a tree-
based, recursive extension, against the corresponding
implementations from the popular NTL and FPLLL li-
braries.

Introduction

Lattice : Group closed under linear combinations with
integer coefficients. E.g. x = Bv with B ∈ Z

m×n (blue
points below).

A lattice is generated by some basis (blue vectors).
Shortest vector problem (SVP): Find the shortest vec-
tor in the lattice (purple vector).
Closest vector problem (CVP): Find the closest vector
in lattice to given point (green vector is closest to green
point).

Some Applications

MIMO Detection

MIMO (Multiple-input and multiple-output) methods use

multiple transmitters and receive antennas for wireless

communication. A signal x ∈ (Z + iZ)n is transmitted

by n transmitters and received by m receivers. Signal:

y = Hx + w, H ∈ C
m×n is the channel matrix, w is

noise. To decode, solve CVP

min
x∈(Z+iZ)n

‖y −Hx‖2.

Lattice-Based Cryptography
Lattice based cryptosystems developed based on the hard-
ness of SVP (e.g. NTRU) and CVP (e.g. GGH). Bases
are typically of dimension n ∈ O(100), with column norms
typically ∼ 10300, while the shortest vectors have norms
∼ 1000.

The Lenstra-Lenstra-Lovász (LLL) Algorithm

Given a basis B for the lattice Λ, LLL produces a ’nice’ basis B′ = BU , where U is unimodular (see red vectors in left
figure). The first column of B′ is an approximation of the shortest vector. B′ is a more suitable basis for computation for
SVP and CVP, producing better approximate solutions than using B directly.
LLL also takes a parameter δ ∈ (1

4, 1) which controls how ’reduced’ the basis will be, with δ larger typically implying a
better reduced basis. LLL is defined for δ = 1, but polynomial-time complexity is guaranteed only for (1

4, 1).
The LLL algorithm can be thought of as forming a factorization that is a generalization of a Column-Pivoted QR.

Column-Pivoted QR

Input: Matrix A
Output: Factorization AP = QR where:

• P is a permutation matrix

• Q is an orthogonal matrix

• R is upper triangular such that:

|r11| ≥ · · · ≥ |rnn|

LLL

Input: Matrix B and δ ∈ (1
4, 1)

Output: Factorization BU = QR where:

• U is a unimodular matrix: U ∈ Zn×n and det U = ±1

• Q is an orthogonal matrix
• R is upper triangular such that:

• (Size-Reduction Property) |rji/rjj| ≤ 1/2 for j < i
• (Lovász Condition) δr2

k−1,k−1 ≤ (1 + r2
k,k−1)r

2
kk for all k

Size reduction property ensures basis vectors are as orthogonal as possible. Lovász condition determines if swapping
columns improves basis.

Outline of LLL Algorithm

while k < n do
Update QR of B:,1:k

Size reduce bk against b1, . . . , bk−1

Update R after size-reduction
if Lovász condition holds for column k then

k ← k + 1
else

Swap columns bk−1, bk

k ← k − 1
end if

end while

Challenges with LLL

• Entries are so large arbitrary precision datatypes are needed.
These are slow so avoiding their use as much as possible while
retaining accuracy desired.

• Want to keep basis in full precision, and QR factorization in
lower precision while maintaining accuracy.

• Right-looking schemes suffer from catastrophic cancellation if
not careful.

• Many swaps can lead to redundant computation, want cheap
accurate updates.

Our Contributions

With LLL’s close connection to CPQR, we take advantage of well known techniques for exploiting level 3 BLAS to implement
an efficient LLL algorithm. In particular:

• We implement a few versions of the LLL algorithm (including deep insertion and deep reduction) and BKZ 2.0
(Blockwise Korkine-Zolotarev algorithm) into the open-source library Elemental [4].

• One implementation includes an efficient left-looking Householder based implementation, which updates the QR
factorization column-wise using Householder transformations.

• Another implementation includes a right-looking Householder-Givens hybrid based implementation. In routines with
few swaps we take advantage of level 3 BLAS panel Householder updates to the entire R factor. If swaps are
encountered, the QR factorization is updated via a single Givens rotation. Blocking of Givens rotations reduces
redundant computation. Using both interpolates between swap-light and swap-heavy regimes by taking advantage of
efficient level 3 BLAS techniques and repeated cheap Givens updates.

• More tricks to maintain accuracy of QR and improve efficiency.

• We develop a tree-based recursive variant of LLL (à la Mergesort). It is particularly useful for quickly reducing entry
sizes to allow for transition to cheaper datatypes (doubles vs. BigFloat) without reducing the entire basis using
heavy-duty datatypes.

Figure: Schematic of the tree-based recursive LLL.

Numerical Experiments

We compare our right-looking hybrid implementation
against the FPLLL [2] and the NTL [5] implementations of
LLL in two regimes: Small (e.g. MIMO or nearly reduced
bases) and large (e.g. cryptographic bases) entry bases.
The first figure compares implementations on knapsack
type bases of size (n + 1)× n with 20-bit entries.
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Our implementation is typically faster in this regime where
relatively fewer swaps are required, and BLAS 3 techniques
can be exploited.
The next figure compares implementations on the SVP
Challenge [1] problem matrices. Column norms are ‖bi‖2 ∈
[10100, 10300].
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Our implementation is slower, but performs many more
swaps as well, producing a shorter first vector. FPLLL and
NTL are particularly good at reducing large column norms
quickly but crudely.

Future Work

• Develop heuristics for fast entry size reduction to
switch to low-precision regime.

• More improvements required to accurately and
quickly work with matrices with large entries.

• Already have working BKZ implementation for
solving SVP problems. Further work explores way to
improve the enumeration procedure for faster
runtimes by exploiting y-sparsity [3].
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