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SUMMARY

We present an analysis for minimizing the condition numbfenansingular parameter-dependenk 2
block-structured saddle-point matrices with a maximablyk-deficient (1,1) block. The matrices arise
from an augmented Lagrangian approach. Using quasiditgus,swe show that a decomposition akin
to simultaneous diagonalization leads to an optimizatiaseld on the extremal nonzero eigenvalues and
singular values of the associated block matrices. Boundshencondition number of the parameter-
dependent matrix are obtained, and we demonstrate thbinégs on a numerical example. Copyright
2016 John Wiley & Sons, Ltd.
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1. INTRODUCTION
Consider the saddle-point system

G 5)6)-0) @

where A € R™*"™ is assumed to be symmetric positive semidefinite with ranrkm, B € R™*"
with m < n, andu, f € R", p, g € R™. Let us denote the coefficient matrix df) (oy

A BT
K(B O). @)

We will assume throughout thd has full row rank and thak’ is nonsingular. The requirement
rank(A) = n — m is rather significant, as it limits us to consider a very sfieciass of problems.
We say thatd is maximally rank deficienbecause it has the minimal rank that can still allow a
nonsingulark. We have recently shown i6] that there are several applications that lead to saddle-
point matrices of this type, and these matrices have unigoepties. For example, their inverse
has a special nonzero structure, and specialized pregamelis can be designed for solving the
corresponding linear systems.
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2 R. ESTRIN AND C. GREIF

SupposéV € R™*™ js a nonsingular (typically symmetric positive definite)iglg matrix. Then
(1) can be reformulated as follows:

A+BTW-'B BT\ (u\ _(f+B'w-!
() G) - @

We will denote the matrix of3) as follows:

A+BT™W~-'B BT
K(W):< 5 o)

Notice thatK (0) is identical to the matri¥< defined in @) and associated witfi).

While (3) is mathematically equivalent td), from a numerical point of views (W) and K
may be very different in terms of conditioning, spectralisture, and other aspects(]. Under
the assumptions we make in this papdr,is singular whereast + B”W ~!' B is nonsingular,
because a necessary condition for the nonsingulariti $ that the null spaces of and B do
not intersect except at the zero vectdy $ection 3]. This, in turn, potentially enriches the family
of solution methods that may be used for solviigy i comparison with solution methods for
solving (1); specifically, the Schur complemeBt{ A + BTW~-1B)~' BT is defined (which has a
simple structure as shown iB]) whereas the analogous Schur complemenkadissociated with
A is undefined due to the singularity df For solution methods and eigenvalue estimates based on
Schur complements see, for example 7, 5, 14, 17] and the references therein.

A desirable goalis to find a numerically good choicelfior In certain applications, such a choice
may often be based on the underlying application; see,[@4,, where a scalar Laplacian is used.
In the absence of specific characteristics of the underlyiatrices, a possible consideration may
be to seek to improve the conditioning of the linear systeimgua simple choice ofi’. To that end,
we will assume thatV is a scaled identity matrix,

Wt =1,

and study when we can expect the condition number of therigddock and the saddle-point matrix
to improve (desirably simultaneously) as a functionyoA reduction in the condition number may
lead to more accurate numerical solutions. In the caseratite solvers, it may also result in faster
convergence, although factors other than the conditionbaursuch as clustering of eigenvalues)
are just as important.

With a slight abuse of notation, let us denote the associatgdx K (W) = K(yI) as

A+~yBTB BT
ko= ("7 )

and the leading block as
A(y) = A+~B'B.

Notice that4(0) = A.

The approach based o8)(or its simplified form with K (v) has been extensively explored in
the literature. It is related to the technique of augmentadrangian in constrained optimization
[8, 12, 16], and has been studied iti(] and other places. Related methods have been successfully
applied in the solution of saddle-point systems arisingifrumerical solution of partial differential
equations with constraints, notably in fluid flo®, 9, 15] and time-harmonic Maxwell equations
[11]. See P, 10 for additional references. The need to deal with lineateys involving A(y)
may arise either as a subproblem within the augmented saddtieproblem, or independently. For
example, in the numerical solution of partial differenggjuations arising in electromagnetics, the
discrete operatoA may represent a curl-curl operator, and it is possible tookenthe singularity
associated with this operator by adopting the strategyidssd here; seé&], 13]. In the constrained
optimization front the need to solve systems associateld Ait/) has arisen in various articles as
part of the revised interest in the Alternating Directionthtad of Multipliers (ADMM); see §].
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TOWARDS AN OPTIMAL CONDITION NUMBER OF CERTAIN SADDLE-POIN MATRICES 3

However, to the best of our knowledge the specific settingresllehas rank. — m has not been
studied.

In Section2 we derive a decompositional relation that allows us to t& ¢hoice ofy to the
extremal nonzero eigenvaluesAfand the extremal singular values Bf We show that our choice
optimizes the condition number af(+). In Section3 we optimize the condition number & ().
Our observations are accompanied by numerical experime8ectiord that validate our analysis.
Finally, in Sectiorb we draw some conclusions.

Notation. Throughout the paper, we use for matrices the norm notdtipto mean the induced
2-norm,||. 2.

2. OPTIMIZING THE CONDITION NUMBER OFA(~)

A small condition number ofA(y) and K (v) may be beneficial in the derivation of numerically
stable solution methods. We start our quest of optimizirggdbndition number by constructing
a decomposition that is related to a simultaneous diagmatéin of the matrices involved. The
following result uses thquasidirect sunof matrices; seef].

Proposition 2.1
Let M, N € R**", and letrank(M) = r, rank(N) = n — r, such that\ + N is nonsingular. Then
there exist nonsingular matricésQ € R™*" and nonsingulas € R™*", T € R(»~")*(»=7) sych

that
. S 0 T o 0 0 T
MP(O 0>Q, NP(O T>Q.

Proof

The proof is straightforward, using SVD, and the decompmsitnay not be unique. We simply
consider the reduced (economy size) singular value decsitignts of M and V:

M=Usvl;, N=wTz",

where U,V € R™", W, Z ¢ R™* (=" all with orthonormal columns, and € R"™*", T ¢
R(»=")x(n=7) are diagonal. We can then construct the desired decommositith P = [U W],
Q = [V Z]. SinceM + N is nonsingular, it follows thaP, @) are nonsingular. O

Proposition2.1 does not require symmetry, and thus it applies to settingsdgh beyond the
assumptions we make in this paper. The proposition leadsctiuple of interesting observations
which are unigue to matrices with the rank structure we aerésted in:

Corollary 2.1
For matricesM, N € R"*", with rank(M) = r, rank(N) = n —r and M + N nonsingular, we
have that

M(M + N)"'N =0, (4)

and(M + N)~'M has eigenvalues = 0, 1 with multiplicitiesn — r andr, respectively.

Proof
We decomposeé/, N according to Propositiof.1and observe that

P(o o) (e(5)e) r(h )
()5 ) (6r)e

= 0.
Copyright© 2016 John Wiley & Sons, Ltd. Numer. Linear Algebra App(2016)
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4 R. ESTRIN AND C. GREIF

The multiplicity of the eigenvalues follows becausek((M + N)~'M) = r, and so it is possible
to show that this matrix has a projection property:

(M+N)"'M)* = (M+N)""(M+N-N)(M+N)"'M
= (M+N)"'M—(M+N)"'NM+N)"'M
= (M+N)"'M,

where we used4] to transition from the second to the third equation. Sineé(M) =n — r we
get the desired eigenvalue multiplicities. O

The 2-norms of the matrice®, @, which are concatenations of rectangular matrices with
orthonormal columns, are bounded by a constant. Indeedp let[U; U, ... U] where each

U; € R™*"i, rank(U;) = 1y, UTU; = I and Zle r; = n. By the triangular inequality for matrix
norms

IPPT =

k
> uu)
;:1
> v
=1

= k, ®)

IN

from which it follows that|| P|| < v/k. However, the norm of the inverse, namél§—'||, cannot be
similarly bounded. We note here that we are particularlgriesgted in the case= 2.
Let us turn our attention to the conditioning afv). Let

AM>X>--> N >0 and o1 >09> >0, >0
be the eigenvalues of and singular values a8, respectively. Define

(1Al B (A A
— — i . 6
“ mm{wn?’ AT =™\ 02 2 [ (6)

m

||A|| HBTH2 )‘1 )\n—m
— = e 7
v max{wn?’ AT =02 oz, J (7)

m

where the superscrigt denotes pseudo-inverse. It was experimentally observégdidnthat the
optimal~, in terms of minimizing the condition number df(~), typically lies in a neighbourhood
of %. We now show that itx < v < /3 then the condition number of(~) is reduced to near-
optimality.

We decomposé andB” B as in Propositior2. 1 Let

A=USsut, B=wrZz", (8)

be the economy size singular value decompositions afd B, respectively. Note that fod, this is
not quite the spectral decomposition, since zero eigenagalte not included; the matriis smaller
in dimensions thant. It follows that the columns of form the eigenvectors a8’ B. Define

P=[UZ. 9
Then we have
A(y) = PEpPT,
where
z(*g 73,2>. (10)
Copyright© 2016 John Wiley & Sons, Ltd. Numer. Linear Algebra App(2016)
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TOWARDS AN OPTIMAL CONDITION NUMBER OF CERTAIN SADDLE-POIN MATRICES 5

SinceX is the only matrix which depends op this simplifies our analysis fdfA (v)||. We can
write )
1y p-T (S 0 -1
A (,7) =P < 0 ,)/7le2 ) P )

and can then study the effectpbn || A~ (v)||.
Although P is not orthogonal, we can still use(>2) to boundx (A (+)) to within a constant from
above and below, as we now show.

Theorem 2.1
GivenA, B, P, ¥ be as defined above, we have

K2 (P)K(S) < 5 (A(y)) < K2 (P)r (D),
so the trend of the growth af (A (v)) is determined by: (%).

Proof
This result follows immediately from the fact that

|PEPT| > [P i)
and by the triangle inequality on norms for matrix multigliion. O

The above bound is tight in the sense that it holds as an égudden P is orthogonal. IfP is not
“near-orthogonal,” i.e.A andB” B span subspaces Bf**"™ which greatly overlap, then this bound
may be weaker, since the condition numbePahight be large.

Noting that~ affects the conditioning oE, not of P, we now study the effect of on X for
various cases. As we shall see, different regions of valties@ative toa ands give us a different
characterization of the growth ¢fA(~)|| and|| A= (~)].

We partitionR™ into three regions, foty in intervals(0, o), (3,00) and[«, 8], and proceed to
analyze each of these cases.

Casel. 0 < v < a. Inthis case, we have that > vo? and),, ', <~ !0, and thus

X[l = 1Al
l= =57 B)|.
We can see that for smajl || A(v)|| will stay relatively constant, while the norm of the inverse
would grow asymptotically likey~!, as~ goes to infinity. Then: (A(y)) € ©(y~ 1), which

shrinks asy increases.
Case2. v > (. In this case, we have that < vo? and\' = >~ 'o.-2, and thus

n—m

|2l =~ B"B
=71 =AM

b

We can see that for largg || A(y)~*|| will stay relatively constant, whil@A(~)|| would grow
like v. Thenk (A(v)) € O(v), which grows asy increases.

Case3. a < v < 5. Note that we may have eithe;% > A;;"" or the reverse, depending on the
problem. Below we cover both scenarios. ' "
First, suppose thaigf;— <y < 2—% In this case, we have that > yo? and\ >y 10,2,
and thus

121 =141
=71 = AT

Copyright© 2016 John Wiley & Sons, Ltd. Numer. Linear Algebra App(2016)
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6 R. ESTRIN AND C. GREIF

In this case, we see that( A (7)) ~ x (X) = k (9) is constant.
Next, we considefs < v < 223 In this case, we have that < o7 and !, <y~ 10,2,
and thus

I =~||B"B||;
l=t =57 B)|.

Again, in this case we see thatA (7)) ~ x () = k (T?).

It remains to show that(X) is minimized wheny € [«, 8]. Sincex(X) is continuous iny,
and since:(X) is decreasing i for v < « and increasing ify for v > 3, necessarily it must
be minimized within[a, 5]. With x(X) approximatings(A + vBT B), we would expect the
true condition number to be minimized within that interval.

Since the condition number @? does not depend on, the above observations are valid for a
sufficiently largey. However, wherP is very ill-conditioned it may indeed take a larg¢o identify
the asymptotic behavior that we have characterized above.

In summary, we see that our analysis ofA (v)) boils down to dealing merely with the
algebraic relationships among extremal nonzero eigeasaAnd singular values, simplifying
previous attempts to analyze this problem. Theogeircan determine the regions e@fwhich are
non-optimal, although the bounds requifeto be orthogonal, in order for them to be tight. As
we will see in Sectiont, our bounds are remarkably accurate whe®) is modest. WherP is
ill-conditioned we cannot expect anymore the bounds to lvg tight, but the trend is still fully
captured. The ranges of 5 provided in §), (7) provide useful bounds on practical choicesfor

3. OPTIMIZING THE CONDITION NUMBER OFK ()

We now perform a similar analysis to minimize the conditiaammer of K (). Recalling the
eigendecomposition oft and the SVD ofB from (8) and P defined in @), we can decompose
K (~) as follows:

K(y)=PR(P)" (11)

,_ (P 0 (s (THT
P(O W> and R<T 0 ,
with 3 from (10) and7” = [0 T] € R™*™. Similarly to our analysis ofi(v) in Section2, v does
not affect the conditioning of’, and thus we are concerned with minimizing the condition bem
of the middle matrix in {1), R. That said, an ill-conditione@’ may require a larget to enter

the asymptotic behavior that we are set out to charactéfieenow studyR by seeking a result
analogous to Theore@ 1

Theorem 3.1
Let P, K(v), andR be defined ing) and (L1). Then

where

K72 (P)k(R) < (K (7)) < £ (P)K(R),
so the trend of the growth af (K ()) is determined by: (R).

The proof of this theorem is exactly the same as that of Thedzel, with the additional
observation that sinc’ is block diagonal andV is orthogonal, them (P’) = x (P). As before,
this bound can be simplified using)(

To analyzeR, we first apply a symmetric permutation as was dond @) Lemma 2.6]. We define
a permutation vector in MrLAB notation as

p=[l:n—mn—-m+ln+ln—m+2n+2,n—m+3,n+3,...,n,n+ml,

Copyright© 2016 John Wiley & Sons, Ltd. Numer. Linear Algebra App(2016)
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TOWARDS AN OPTIMAL CONDITION NUMBER OF CERTAIN SADDLE-POIN MATRICES 7

and apply the symmetric permutationfio Let the permuted matrix be

o (S 0
R = R(pap) - <0 Td) )
whereS = diag ();) is the matrix of eigenvalues fot and7? is a block diagonal matrix with.

2 x 2 blocks such that ,
Yo;  0Oi
= diag < . O> . (12)

The sparsity patterns @t and R’ can be found in Figuré.

Sparsity Pattern of R Sparsity Pattern of R'

e
20 '-,. 20
e, e,
30 e ",
o o 30 +
e, e,
40 o . *l 40 L)

0
3
50 -, 50 3
- -
0 10 20 30 40 50 0 10 20 30 40 50
nz =70 nz=70

Figure 1. Sparsity patterns ¢ and R’: the original matrix is on the left, and the permuted one ighan
right.

Having permuted? into a matrix with a more favorable sparsity pattern, we cegita similar

analysis of|R|| = ||R[| and||R~1|| = H(R’)’IH.
Note that the eigenvalues @f in (12) are

oyl 2 2,4 2
) = 5 (202 = ot w02 13)

while the eigenvalues of the inverse are

(ni! (7))i = % (—vi bk %) : (14)
Remark 3.1

From here henceforth, unless otherwise noted, defifiey) = |u;,! (7)™ | andpy (v) = 1 ().

It should be noted that for fixed, u; ()" decreases monotonically apd* ()~ increases in
magnitude (that is, becomes more negative) msreases) < i < m. For a fixeds;, u; (v)* and
w; ' (v)” grow monotonically withy. Thus we have thatR| = max { A, 1] ()} and||R~!|| =
min {2, unt (7))}, sinceR’ is block diagonal, and each block is symmetric. Define

f 4] - 151"
w:mm{wn A 14 = }
-l ) &
b4 i [y
wmax{HBH —[|A || HATH B | A }
:max{j_%_%l7ﬁﬂggnm}. (16)
Copyright© 2016 John Wiley & Sons, Ltd. Numer. Linear Algebra App(2016)

Prepared usingilaauth.cls DOI: 10.1002/nla



8 R. ESTRIN AND C. GREIF

Again, we partitionR into three intervals(0, v), [¢,w], and(w, oc), and examine: (R) for each
interval. Note that it's possible for eitheg)% . % to be negative, and we restrict

A1 An—m
v > 0.

Casel. 0 < v < 9. Fory < 1, it can be verified that; > y; (v), and that\ !

n—m > M’;Ll (’7)' ThUS We
have

Rl = [lAll;
—1 o
1= = AT
Thus for smally, x (R) =  (A), and thus remains constant. As will be shown in the following
cases, it is for smally (in fact, for v = 0), that the condition number aR is minimized.
Although using smaly would be tempting, it was seen in Sectidthat A + vB” B is poorly
conditioned. Note that assuming> 0 imposes a constraint on the eigenvaluesiand the

singular values oB.
Case2. v > w. Inthis case, it can be verified th&t < y; (), andX, ', < pu! (7). Then

IR =l (NI
1B =l ()1

It can be seen that(R) € ©(+?) for large~, agreeing with the results from].

Case3. ¢ < v < w. We again split this case based on whet@@r— /\% <= - % or the

reverse. '
Firstly, Ietﬁ—% - <Y<y - A;—;” Then); <y (y) while Xt > ut (), leading
to

IR = [l (VI 5

[B=H] = [l
An—m H — _

In the second casé;% % > > an — SerThends > (v) while AL, < gt (),
leading to

B[ = [IA];

1=H] = flrm (0]

Thus in both subcases, we find thatR) € ©(v).

After analyzing the condition numbers of bathand R, which asymptotically correlate (foy
sufficiently large) with the condition numbers af+ vB” B and K (), respectively, we see that we
are interested i € (0,%] N [«, 5]. Itis entirely possible that that intersection is empty] an one
will want to choosey that falls near the endpoints of one of the desired intervals

Let us establish conditions under whith /] N [«, 5] # (). The following proposition captures
the conditions under which we may obtain a non-empty intgice.

Proposition 3.1
Let A, B, be as given previous sections. Then if either

M 1 Aaemoand AL o Anem 1
a=2hY =y - T and iy 4+ T <

_ An—m A 1 A An—m 1
a——,w——é—)\—lando_—%—o_—2>/\—l,)\1>0'1

P
75 91 m

3.a=22m = L 2w andy/2N, ., < om

2
Tin An—m

then(0, ¥ N [ev, 5] # 0.

Copyright© 2016 John Wiley & Sons, Ltd. Numer. Linear Algebra App(2016)
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TOWARDS AN OPTIMAL CONDITION NUMBER OF CERTAIN SADDLE-POIN MATRICES 9

Thus we have conditions where we can potentially find opticoablition numbers for botA (+)
andK () simultaneouslyif A or B are scaled individually, it is possible to shift 3, v, w to more
favourable positions, although the effectiveness of thidblem-dependent.

We note that while our bounds depend only only two pairs afesal (nonzero) eigenvalues and
singular values, two of these four quantities may be tougbtotopute. Indeed, while the largest
eigenvalue ofA \; and the largest singular valug of B are expected to be relatively easy to
compute at least when they are well separated from theinsdaogest counterparts (in which case
we can effectively use, for example, a power method-typenott it is expected that,,_,,, and
om Would be significantly harder to compute.

4. NUMERICAL EXPERIMENTS

We gauge the accuracy of our estimation of the condition rerfady varyingy and the desired value
of the optimaly by presenting two numerical examples. The first one dealsawtell-conditioned

matrix, and our bounds are shown to be remarkably tight. Boersd example is one of an ill-
conditioned matrix, where we see that while the bounds arasiight, they still capture the trend.

Example 4.1

The matricesA and B arise from the finite element method being applied to solthwegytime-
harmonic Maxwell’s equationl[l]; A is 6080 x 6080 and it represents a discrete curl-curl operator,
and B represents a discrete divergence operator and is of diovengis85 x 6080. In the results
presented below we have scalédand B by modest multiplicative factors to better illustrate the
merits of our analysis. We havg P) = 1.67, so we see thatl and B” B have nearly orthogonal
column spaces, allowing to be well conditioned. For our augmented matrix,

o = 3.88,
B =1734.

We then plots (A 4+ vB” B) against our estimation of the condition number as deriveSkiction
2. The lower bound is taken to be 2 (P) x (X) while the upper bound is taken to B (P) x (X).

12

107 ¢
3 ® K(A+yB'B)
[ N )
\
10" o == =k PPKE
£ LN ===k (P) 2k (Z
R (P) k()
8 N .
10k v %t /e
E \ \’ ¢
‘\\ \ ‘.,
\' \ , ¢ ¢
& 107 ¢ . ‘.\‘\ ie
AN v
2 DR F)
x AN TR A Id? A G LoV
~ 8 \ N n-m m , ’
< 10° b s e S,
(N e
N .
s ¢y,
AN v,
7 ANEY ‘0,
10 ¢ \ e N s ¢
N AYERN 7’ 4
EYRY L
N ‘N b === == - 4 \' 4
\\\’ 7,
10° b \\1-..-0.‘..-! 4
4
\
A R 4
105 | | | | | | ]
10° 107" 107 10° 10° 10 10° 10°

Figure 2. Condition number of augmented leading block asation of~, for a problem arising from the
discretized time-harmonic Maxwell equations.
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10 R. ESTRIN AND C. GREIF

We can see in Figurg the estimation of: (4 + vB” B) matches the actual condition number
well within an order of magnitude for both the upper and lolveunds. In theory, we cannot expect
the variation ofx (A + VBTB) to be constant over the interval< v < 3, because our bound is
affected by the spectrum d@?f. At the same time, the condition numberXfis definitely constant
over this interval, since we have,_,, < yo? < ;. Pleasingly, we are seeing in Figuzehat the
variation in the condition number is minor.

We report a similar situation for our estimationofK (v)). We have

¥ = 62.5,
w = 1734.

As can be seen in Figui the eigenvalues oft and singular values aB allow for three distinct
regions where:(R) is flat, growing linearly and growing quadratically. Theyef we would be
interested in keeping < . We note here that might be zero or negative in certain instances. The
practical meaning of such cases is thahould be kept as small as possible for the conditioning of
the saddle-point matrix to be minimized. The choice o« may work well in this case.

In both Figures2 and 3, it can be seen that while Theorerdl and 3.1 give true bounds on
the condition numbers; (X) andx (R) provide excellent estimates. Singe 3] N [0,¢] # 0, one
would ideally choose in the rangda, v}, which would result in minimizing the condition number
of both A + vB” B and the saddle-point matrix itself.

1016 _

’
o K(K ,®
\) v,
G ,7,
10 F|= = = 2 ‘¢4
K (P)"k (R) '/.,,
= (P2
K(P)“k (R) i
12 Il,\',
107+ /,\'/
,'ﬁ/
.
U -\ Id? .,
10 n-m n-m’ "m ’,
10°+ .7,
> ‘e
S ‘r
< %
8 e
10" v,
e
0" )
_________________ «;)',’
10° b 0 - B == @ mmm 0= = T
_________________ L d
10* |-
A G -1,
102 -4 ‘*2 ‘U ‘Z ‘4 ‘G ‘8
10 10 10 10 10 10 10

Figure 3. Condition number of augmented saddle-point mafria function ofy, for a problem arising from
the discretized time-harmonic Maxwell equations.

Example 4.2

Next, we consider a case whekeis (relatively) ill-conditioned, and investigate its effeon our
estimates. We note here that we cannot t&& have a condition number that is overly large,
because this quantity appears in squared form in the bowndsd condition numbers of(v) and

K (v) in Theorems.1 and3.1, respectively. Therefore, to avoid considering numelycsihgular
A(v) and K (), we need to settle foP whose condition number is smaller than the square root of
the roundoff unit.

Copyright© 2016 John Wiley & Sons, Ltd. Numer. Linear Algebra App(2016)
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TOWARDS AN OPTIMAL CONDITION NUMBER OF CERTAIN SADDLE-POIN MATRICES 11

We take a randorm000 x 1000 matrix for A and a randon300 x 1000 matrix for B, such that
k(P) ~8-10°. We have thak(A + vBT B) > 10'“. For thesed and B, we have

a=0.4,

B =091,

and we plot«(A + vB” B) in Figure4. (Note thaix and3 are independent of the condition number
of P.)

10 :

16 S~ -
10+ ~o - o ©® |

°
104E .’Dooo’... -

102 _

1010 [ B

k(A+yBTB)

10° B
10° - 4

10 —

L=
L.
L=
L-

-
-
-
- =
~~~~~~ -| ® k(A+yB'B)||
h f= =K (D)
== kPP E

10° N Ll Ll el M A
10° 107 10" 10° 10 10° 10°

10"

V-
L-
I

Figure 4. Condition number of ill-conditioned + vB” B for randomA and B over varyingy.

We can make some observations about the quality of the egtimfar ill-conditionedP in Figure
4 as compared to a well-conditionétlin Figure2. As expected, the large condition numberrof
results in the true condition number is better estimatechbyupper bound of (X)«(P)? than just
k(X). The asymptotics for small and largestill grow like y~—! and~ respectively; however the
transition regions for the condition numbers are not as defiined as they are in Figu& With
a < v < B, we expeck(A + vBT B) to be fairly constant, but instead optimality occurs at ighs
dip wherey ~ *£2.

Next, we plotx(K (v)) in Figure5. For this case we have

1/1:0,
w=4.9.

These values are small and do not depengl ononx(P), and since) = 0, no constraintis imposed
in relation to the eigenvalues gf and the singular values @f.

Similarly to the situation ford () we see that while(R) no longer accurately capturesk (v)),
our bounds very well trap the condition number. Interedyirttpe slope of the computed condition
number no longer follows that of the bounds.
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Figure 5. Condition number of ill-conditioned K (y)) for randomA and B over varyingy.

5. CONCLUDING REMARKS

We have developed conditions for minimizing the conditiammivers ofA(y) and K (v), which
depend on the extremal nonzero eigenvalues afd singular values a®. We have also established
conditions for a joint domain where both condition numbeesrainimized.

Our approach applies to the case of maximal nullity of thdilegblock. While this a restriction,
it does represent a number of interesting applicati@hsgnd in our experiments, the region of
minimized condition numbers is predicted in a tight and {z@&ashion.

Our analysis straightforwardly extends to the nonsymmetése, under the same rank
assumptions on the matricélsand B. If A were to be nonsymmetric, then its eigendecomposition
in (8) would be replaced by the singular value decompositioa USV?, and we would have
A(y) = PEQT where P = [U Z] andQ = [V Z]. Theorems2.1 and 3.1 would then be adjusted
accordingly in a seamless fashion.

Another potentially interesting issue to explore may betaasion where the the rank of the
leading block is slightly larger tham — m. Under that scenario, our analysis (and our reliance on
guasi-direct sums) can no longer be carried out, but usiggnealue interlacing arguments may
still provide a way to find an effective approximation to thgiimal v. We leave this as an item for
future investigation.
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