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SUMMARY

We present an analysis for minimizing the condition number of nonsingular parameter-dependent2× 2
block-structured saddle-point matrices with a maximally rank-deficient (1,1) block. The matrices arise
from an augmented Lagrangian approach. Using quasidirect sums, we show that a decomposition akin
to simultaneous diagonalization leads to an optimization based on the extremal nonzero eigenvalues and
singular values of the associated block matrices. Bounds onthe condition number of the parameter-
dependent matrix are obtained, and we demonstrate their tightness on a numerical example. Copyrightc©
2016 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Consider the saddle-point system

(

A BT

B 0

)(

u

p

)

=

(

f

g

)

, (1)

whereA ∈ R
n×n is assumed to be symmetric positive semidefinite with rankn−m, B ∈ R

m×n

with m < n, andu, f ∈ R
n, p, g ∈ R

m. Let us denote the coefficient matrix of (1) by

K =

(

A BT

B 0

)

. (2)

We will assume throughout thatB has full row rank and thatK is nonsingular. The requirement
rank(A) = n−m is rather significant, as it limits us to consider a very specific class of problems.
We say thatA is maximally rank deficientbecause it has the minimal rank that can still allow a
nonsingularK. We have recently shown in [6] that there are several applications that lead to saddle-
point matrices of this type, and these matrices have unique properties. For example, their inverse
has a special nonzero structure, and specialized preconditioners can be designed for solving the
corresponding linear systems.
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2 R. ESTRIN AND C. GREIF

SupposeW ∈ R
m×m is a nonsingular (typically symmetric positive definite) weight matrix. Then

(1) can be reformulated as follows:
(

A+BTW−1B BT

B 0

)(

u

p

)

=

(

f +BTW−1g

g

)

. (3)

We will denote the matrix of (3) as follows:

K(W ) =

(

A+BTW−1B BT

B 0

)

.

Notice thatK(0) is identical to the matrixK defined in (2) and associated with (1).
While (3) is mathematically equivalent to (1), from a numerical point of viewK(W ) andK

may be very different in terms of conditioning, spectral structure, and other aspects [10]. Under
the assumptions we make in this paper,A is singular whereasA+BTW−1B is nonsingular,
because a necessary condition for the nonsingularity ofK is that the null spaces ofA andB do
not intersect except at the zero vector [2, Section 3]. This, in turn, potentially enriches the family
of solution methods that may be used for solving (3) in comparison with solution methods for
solving (1); specifically, the Schur complementB(A+BTW−1B)−1BT is defined (which has a
simple structure as shown in [6]) whereas the analogous Schur complement ofK associated with
A is undefined due to the singularity ofA. For solution methods and eigenvalue estimates based on
Schur complements see, for example, [1, 2, 5, 14, 17] and the references therein.

A desirable goal is to find a numerically good choice forW . In certain applications, such a choice
may often be based on the underlying application; see, e.g.,[11], where a scalar Laplacian is used.
In the absence of specific characteristics of the underlyingmatrices, a possible consideration may
be to seek to improve the conditioning of the linear system using a simple choice ofW . To that end,
we will assume thatW is a scaled identity matrix,

W−1 = γIm,

and study when we can expect the condition number of the leading block and the saddle-point matrix
to improve (desirably simultaneously) as a function ofγ. A reduction in the condition number may
lead to more accurate numerical solutions. In the case of iterative solvers, it may also result in faster
convergence, although factors other than the condition number (such as clustering of eigenvalues)
are just as important.

With a slight abuse of notation, let us denote the associatedmatrixK(W ) = K(γI) as

K(γ) =

(

A+ γBTB BT

B 0

)

and the leading block as
A(γ) = A+ γBTB.

Notice thatA(0) ≡ A.
The approach based on (3) or its simplified form withK(γ) has been extensively explored in

the literature. It is related to the technique of augmented Lagrangian in constrained optimization
[8, 12, 16], and has been studied in [10] and other places. Related methods have been successfully
applied in the solution of saddle-point systems arising from numerical solution of partial differential
equations with constraints, notably in fluid flow [3, 9, 15] and time-harmonic Maxwell equations
[11]. See [2, 10] for additional references. The need to deal with linear systems involvingA(γ)
may arise either as a subproblem within the augmented saddle-point problem, or independently. For
example, in the numerical solution of partial differentialequations arising in electromagnetics, the
discrete operatorA may represent a curl-curl operator, and it is possible to remove the singularity
associated with this operator by adopting the strategy discussed here; see [11, 13]. In the constrained
optimization front the need to solve systems associated with A(γ) has arisen in various articles as
part of the revised interest in the Alternating Direction Method of Multipliers (ADMM); see [4].
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TOWARDS AN OPTIMAL CONDITION NUMBER OF CERTAIN SADDLE-POINT MATRICES 3

However, to the best of our knowledge the specific setting whereA has rankn−m has not been
studied.

In Section2 we derive a decompositional relation that allows us to tie the choice ofγ to the
extremal nonzero eigenvalues ofA and the extremal singular values ofB. We show that our choice
optimizes the condition number ofA(γ). In Section3 we optimize the condition number ofK(γ).
Our observations are accompanied by numerical experimentsin Section4 that validate our analysis.
Finally, in Section5 we draw some conclusions.

Notation.Throughout the paper, we use for matrices the norm notation‖.‖ to mean the induced
2-norm,‖.‖2.

2. OPTIMIZING THE CONDITION NUMBER OFA(γ)

A small condition number ofA(γ) andK(γ) may be beneficial in the derivation of numerically
stable solution methods. We start our quest of optimizing the condition number by constructing
a decomposition that is related to a simultaneous diagonalization of the matrices involved. The
following result uses thequasidirect sumof matrices; see [7].

Proposition 2.1
LetM,N ∈ R

n×n, and letrank(M) = r, rank(N) = n− r, such thatM +N is nonsingular. Then
there exist nonsingular matricesP,Q ∈ R

n×n and nonsingularS ∈ R
r×r, T ∈ R

(n−r)×(n−r) such
that

M = P

(

S 0
0 0

)

QT ; N = P

(

0 0
0 T

)

QT .

Proof
The proof is straightforward, using SVD, and the decomposition may not be unique. We simply
consider the reduced (economy size) singular value decompositions ofM andN :

M = USV T ; N =WTZT ,

where U, V ∈ R
n×r, W,Z ∈ R

n×(n−r), all with orthonormal columns, andS ∈ R
r×r, T ∈

R
(n−r)×(n−r) are diagonal. We can then construct the desired decomposition with P = [U W ],

Q = [V Z]. SinceM +N is nonsingular, it follows thatP,Q are nonsingular.

Proposition2.1 does not require symmetry, and thus it applies to settings that go beyond the
assumptions we make in this paper. The proposition leads to acouple of interesting observations
which are unique to matrices with the rank structure we are interested in:

Corollary 2.1
For matricesM,N ∈ R

n×n, with rank(M) = r, rank(N) = n− r andM +N nonsingular, we
have that

M(M +N)−1N = 0, (4)

and(M +N)−1M has eigenvaluesλ = 0, 1 with multiplicitiesn− r andr, respectively.

Proof
We decomposeM ,N according to Proposition2.1and observe that

M (M +N)
−1
N = P

(

S 0
0 0

)

QT

(

P

(

S 0
0 T

)

QT

)−1

P

(

0 0
0 T

)

QT

= P

(

S 0
0 0

)(

S 0
0 T

)−1(
0 0
0 T

)

QT

= 0.
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4 R. ESTRIN AND C. GREIF

The multiplicity of the eigenvalues follows becauserank((M +N)−1M) = r, and so it is possible
to show that this matrix has a projection property:

(

(M +N)−1M
)2

= (M +N)−1(M +N −N)(M +N)−1M

= (M +N)−1M − (M +N)−1N(M +N)−1M

= (M +N)−1M,

where we used (4) to transition from the second to the third equation. Sincenull(M) = n− r we
get the desired eigenvalue multiplicities.

The 2-norms of the matricesP,Q, which are concatenations of rectangular matrices with
orthonormal columns, are bounded by a constant. Indeed, letP = [U1 U2 . . . Uk] where each
Ui ∈ R

n×ri , rank(Ui) = ri, UT
i Ui = I and

∑k

i=1 ri = n. By the triangular inequality for matrix
norms

∥

∥PPT
∥

∥ =

∥

∥

∥

∥

∥

k
∑

i=1

UiU
T
i

∥

∥

∥

∥

∥

≤
k
∑

i=1

∥

∥UiU
T
i

∥

∥

= k, (5)

from which it follows that‖P‖ ≤
√
k. However, the norm of the inverse, namely‖P−1‖, cannot be

similarly bounded. We note here that we are particularly interested in the casek = 2.
Let us turn our attention to the conditioning ofA(γ). Let

λ1 > λ2 > · · · > λn−m > 0 and σ1 > σ2 > · · · > σm > 0

be the eigenvalues ofA and singular values ofB, respectively. Define

α = min

{ ‖A‖
‖B‖2 ,

‖B†‖2
‖A†‖

}

= min

{

λ1

σ2
1

,
λn−m

σ2
m

}

; (6)

β = max

{ ‖A‖
‖B‖2 ,

‖B†‖2
‖A†‖

}

= max

{

λ1

σ2
1

,
λn−m

σ2
m

}

, (7)

where the superscript† denotes pseudo-inverse. It was experimentally observed in[10] that the
optimalγ, in terms of minimizing the condition number ofA(γ), typically lies in a neighbourhood
of ‖A‖

‖B‖2 . We now show that ifα < γ < β then the condition number ofA(γ) is reduced to near-
optimality.

We decomposeA andBTB as in Proposition2.1. Let

A = USUT , B =WTZT , (8)

be the economy size singular value decompositions ofA andB, respectively. Note that forA, this is
not quite the spectral decomposition, since zero eigenvalues are not included; the matrixS is smaller
in dimensions thanA. It follows that the columns ofZ form the eigenvectors ofBTB. Define

P = [U Z] . (9)

Then we have

A(γ) = PΣPT ,

where

Σ ≡
(

S 0
0 γT 2

)

. (10)
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TOWARDS AN OPTIMAL CONDITION NUMBER OF CERTAIN SADDLE-POINT MATRICES 5

SinceΣ is the only matrix which depends onγ, this simplifies our analysis for‖A (γ)‖. We can
write

A−1 (γ) = P−T

(

S−1 0
0 γ−1T−2

)

P−1,

and can then study the effect ofγ on
∥

∥A−1 (γ)
∥

∥.
AlthoughP is not orthogonal, we can still useκ (Σ) to boundκ (A (γ)) to within a constant from

above and below, as we now show.

Theorem 2.1
GivenA, B, P , Σ be as defined above, we have

κ−2 (P )κ (Σ) ≤ κ (A (γ)) ≤ κ2 (P )κ (Σ) ,

so the trend of the growth ofκ (A (γ)) is determined byκ (Σ).

Proof
This result follows immediately from the fact that

∥

∥PΣPT
∥

∥ ≥
∥

∥P−1
∥

∥

−2 ‖Σ‖ ,

and by the triangle inequality on norms for matrix multiplication.

The above bound is tight in the sense that it holds as an equality whenP is orthogonal. IfP is not
“near-orthogonal,” i.e.,A andBTB span subspaces ofRn×n which greatly overlap, then this bound
may be weaker, since the condition number ofP might be large.

Noting thatγ affects the conditioning ofΣ, not of P , we now study the effect ofγ on Σ for
various cases. As we shall see, different regions of values of γ relative toα andβ give us a different
characterization of the growth of‖A(γ)‖ and‖A−1(γ)‖.

We partitionR+ into three regions, forγ in intervals(0, α), (β,∞) and [α, β], and proceed to
analyze each of these cases.

Case 1. 0 < γ < α. In this case, we have thatλ1 > γσ2
1 andλ−1

n−m < γ−1σ−2
m , and thus

‖Σ‖ = ‖A‖ ;
∥

∥Σ−1
∥

∥ = γ−1
∥

∥

∥

(

BTB
)†
∥

∥

∥
.

We can see that for smallγ, ‖A(γ)‖ will stay relatively constant, while the norm of the inverse
would grow asymptotically likeγ−1, asγ goes to infinity. Thenκ (A(γ)) ∈ Θ(γ−1), which
shrinks asγ increases.

Case 2. γ > β. In this case, we have thatλ1 < γσ2
1 andλ−1

n−m > γ−1σ−2
m , and thus

‖Σ‖ = γ
∥

∥BTB
∥

∥ ;
∥

∥Σ−1
∥

∥ =
∥

∥A†
∥

∥ .

We can see that for largeγ,
∥

∥A(γ)−1
∥

∥ will stay relatively constant, while‖A(γ)‖ would grow
like γ. Thenκ (A(γ)) ∈ Θ(γ), which grows asγ increases.

Case 3. α < γ < β. Note that we may have eitherλ1

σ2

1

>
λn−m

σ2
m

or the reverse, depending on the
problem. Below we cover both scenarios.
First, suppose thatλn−m

σ2
m

< γ < λ1

σ2

1

. In this case, we have thatλ1 > γσ2
1 andλ−1

n−m > γ−1σ−2
m ,

and thus

‖Σ‖ = ‖A‖ ;
∥

∥Σ−1
∥

∥ =
∥

∥A†
∥

∥ .
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6 R. ESTRIN AND C. GREIF

In this case, we see thatκ (A (γ)) ≃ κ (Σ) = κ (S) is constant.
Next, we considerλ1

σ2

1

< γ <
λn−m

σ2
m

. In this case, we have thatλ1 < γσ2
1 andλ−1

n−m < γ−1σ−2
m ,

and thus

‖Σ‖ = γ
∥

∥BTB
∥

∥ ;
∥

∥Σ−1
∥

∥ = γ−1
∥

∥

∥

(

BTB
)†
∥

∥

∥
.

Again, in this case we see thatκ (A (γ)) ≃ κ (Σ) = κ
(

T 2
)

.
It remains to show thatκ(Σ) is minimized whenγ ∈ [α, β]. Sinceκ(Σ) is continuous inγ,
and sinceκ(Σ) is decreasing inγ for γ < α and increasing inγ for γ > β, necessarily it must
be minimized within[α, β]. With κ(Σ) approximatingκ(A+ γBTB), we would expect the
true condition number to be minimized within that interval.

Since the condition number ofP does not depend onγ, the above observations are valid for a
sufficiently largeγ. However, whenP is very ill-conditioned it may indeed take a largeγ to identify
the asymptotic behavior that we have characterized above.

In summary, we see that our analysis ofκ (A (γ)) boils down to dealing merely with the
algebraic relationships among extremal nonzero eigenvalues and singular values, simplifying
previous attempts to analyze this problem. Theorem2.1 can determine the regions ofγ which are
non-optimal, although the bounds requireP to be orthogonal, in order for them to be tight. As
we will see in Section4, our bounds are remarkably accurate whenκ(P ) is modest. WhenP is
ill-conditioned we cannot expect anymore the bounds to be very tight, but the trend is still fully
captured. The ranges ofα, β provided in (6), (7) provide useful bounds on practical choices forγ.

3. OPTIMIZING THE CONDITION NUMBER OFK(γ)

We now perform a similar analysis to minimize the condition number ofK(γ). Recalling the
eigendecomposition ofA and the SVD ofB from (8) andP defined in (9), we can decompose
K(γ) as follows:

K(γ) = P ′R (P ′)
T (11)

where

P ′ ≡
(

P 0
0 W

)

and R =

(

Σ (T ′)T

T 0

)

,

with Σ from (10) andT ′ = [0 T ] ∈ R
m×n. Similarly to our analysis ofA(γ) in Section2, γ does

not affect the conditioning ofP ′, and thus we are concerned with minimizing the condition number
of the middle matrix in (11), R. That said, an ill-conditionedP ′ may require a largerγ to enter
the asymptotic behavior that we are set out to characterize.We now studyR by seeking a result
analogous to Theorem2.1.

Theorem 3.1
Let P ,K(γ), andR be defined in (9) and (11). Then

κ−2 (P )κ (R) ≤ κ (K(γ)) ≤ κ2 (P )κ (R) ,

so the trend of the growth ofκ (K(γ)) is determined byκ (R).

The proof of this theorem is exactly the same as that of Theorem 2.1, with the additional
observation that sinceP ′ is block diagonal andW is orthogonal, thenκ (P ′) = κ (P ). As before,
this bound can be simplified using (5).

To analyzeR, we first apply a symmetric permutation as was done in [10, Lemma 2.6]. We define
a permutation vector in MATLAB notation as

p̄ = [1 : n−m,n−m+ 1, n+ 1, n−m+ 2, n+ 2, n−m+ 3, n+ 3, . . . , n, n+m] ,

Copyright c© 2016 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl.(2016)
Prepared usingnlaauth.cls DOI: 10.1002/nla



TOWARDS AN OPTIMAL CONDITION NUMBER OF CERTAIN SADDLE-POINT MATRICES 7

and apply the symmetric permutation toR. Let the permuted matrix be

R′ ≡ R(p̄, p̄) =

(

S 0
0 T d

)

,

whereS = diag (λi) is the matrix of eigenvalues forA andT d is a block diagonal matrix withm
2× 2 blocks such that

T d = diag

(

γσ2
i σi

σi 0

)

. (12)

The sparsity patterns ofR andR′ can be found in Figure1.

0 10 20 30 40 50

0

10

20

30

40

50

nz = 70

Sparsity Pattern of R

0 10 20 30 40 50

0

10

20

30

40

50

nz = 70

Sparsity Pattern of R′

Figure 1. Sparsity patterns ofR andR′: the original matrix is on the left, and the permuted one is onthe
right.

Having permutedR into a matrix with a more favorable sparsity pattern, we can begin a similar

analysis of‖R‖ = ‖R′‖ and
∥

∥R−1
∥

∥ =
∥

∥

∥
(R′)−1

∥

∥

∥
.

Note that the eigenvalues ofT d in (12) are

µi (γ)
±
=

1

2

(

γσ2
i ±

√

γ2σ4
i + 4σ2

i

)

, (13)

while the eigenvalues of the inverse are

(

µ−1
i (γ)

)±
=

1

2

(

−γ ±
√

γ2 +
4

σ2
i

)

. (14)

Remark 3.1
From here henceforth, unless otherwise noted, defineµ−1

m (γ) =
∣

∣µ−1
m (γ)

−
∣

∣ andµ1 (γ) = µ1 (γ)
+.

It should be noted that for fixedγ, µi (γ)
+ decreases monotonically andµ−1

i (γ)
− increases in

magnitude (that is, becomes more negative) asi increases,0 ≤ i ≤ m. For a fixedσi, µi (γ)
+ and

µ−1
i (γ)

− grow monotonically withγ. Thus we have that‖R‖ = max
{

λ1, µ
+
1 (γ)

}

and
∥

∥R−1
∥

∥ =

min
{

λ−1
n−m, µ

−1
m (γ)

−}, sinceR′ is block diagonal, and each block is symmetric. Define

ψ = min

{

‖A‖
‖B‖2

− ‖A‖−1
,
∥

∥A†
∥

∥−
∥

∥B†
∥

∥

2

‖A†‖

}

= min

{

λ1

σ2
1

− 1

λ1
,

1

λn−m

− λn−m

σ2
m

}

; (15)

ω = max

{

‖A‖
‖B‖2

− ‖A‖−1
,
∥

∥A†
∥

∥−
∥

∥B†
∥

∥

2

‖A†‖

}

= max

{

λ1

σ2
1

− 1

λ1
,

1

λn−m

− λn−m

σ2
m

}

. (16)

Copyright c© 2016 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl.(2016)
Prepared usingnlaauth.cls DOI: 10.1002/nla



8 R. ESTRIN AND C. GREIF

Again, we partitionR into three intervals,(0, ψ), [ψ, ω], and(ω,∞), and examineκ (R) for each
interval. Note that it’s possible for eitherλ1

σ2

1

− 1
λ1

, 1
λn−m

− λn−m

σ2
m

to be negative, and we restrict
γ > 0.

Case 1. 0 < γ < ψ. Forγ < ψ, it can be verified thatλ1 > µ1 (γ), and thatλ−1
n−m > µ−1

m (γ). Thus we
have

‖R‖ = ‖A‖ ;
∥

∥R−1
∥

∥ =
∥

∥A†
∥

∥ .

Thus for smallγ, κ (R) = κ (A), and thus remains constant. As will be shown in the following
cases, it is for smallγ (in fact, for γ = 0), that the condition number ofR is minimized.
Although using smallγ would be tempting, it was seen in Section2 thatA+ γBTB is poorly
conditioned. Note that assumingψ > 0 imposes a constraint on the eigenvalues ofA and the
singular values ofB.

Case 2. γ > ω. In this case, it can be verified thatλ1 < µ1 (γ), andλ−1
n−m < µ−1

m (γ). Then

‖R‖ = ‖µ1 (γ)‖ ;
∥

∥R−1
∥

∥ =
∥

∥µ−1
m (γ)

∥

∥ .

It can be seen thatκ (R) ∈ Θ(γ2) for largeγ, agreeing with the results from [10].
Case 3. ψ < γ < ω. We again split this case based on whetherλ1

σ2

1

− 1
λ1

< 1
λn−m

− λn−m

σ2
m

or the
reverse.
Firstly, let λ1

σ2

1

− 1
λ1

< γ < 1
λn−m

− λn−m

σ2
m

. Thenλ1 < µ1 (γ) while λ−1
n−m > µ−1

m (γ), leading
to

‖R‖ = ‖µ1 (γ)‖ ;
∥

∥R−1
∥

∥ =
∥

∥A†
∥

∥ .

In the second case,λ1

σ2

1

− 1
λ1

> γ > 1
λn−m

− λn−m

σ2
m

. Thenλ1 > µ1 (γ) whileλ−1
n−m < µ−1

m (γ),
leading to

‖R‖ = ‖A‖ ;
∥

∥R−1
∥

∥ =
∥

∥µ−1
m (γ)

∥

∥ .

Thus in both subcases, we find thatκ (R) ∈ Θ(γ).

After analyzing the condition numbers of bothΣ andR, which asymptotically correlate (forγ
sufficiently large) with the condition numbers ofA+ γBTB andK(γ), respectively, we see that we
are interested inγ ∈ (0, ψ] ∩ [α, β]. It is entirely possible that that intersection is empty, and so one
will want to chooseγ that falls near the endpoints of one of the desired intervals.

Let us establish conditions under which(0, ψ] ∩ [α, β] 6= ∅. The following proposition captures
the conditions under which we may obtain a non-empty intersection.

Proposition 3.1
LetA, B, be as given previous sections. Then if either

1. α = λ1

σ2

1

, ψ = 1
λn−m

− λn−m

σ2
m

and λ1

σ2

1

+ λn−m

σ2
m

< 1
λn−m

2. α = λn−m

σ2
m

, ψ = λ1

σ2

1

− 1
λ1

and λ1

σ2

1

− λn−m

σ2
m

> 1
λ1

, λ1 > σ1

3. α = λn−m

σ2
m

, ψ = 1
λn−m

− λn−m

σ2
m

and
√
2λn−m < σm

then(0, ψ] ∩ [α, β] 6= ∅.

Copyright c© 2016 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl.(2016)
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TOWARDS AN OPTIMAL CONDITION NUMBER OF CERTAIN SADDLE-POINT MATRICES 9

Thus we have conditions where we can potentially find optimalcondition numbers for bothA(γ)
andK(γ) simultaneously. If A orB are scaled individually, it is possible to shiftα, β, ψ, ω to more
favourable positions, although the effectiveness of this is problem-dependent.

We note that while our bounds depend only only two pairs of extremal (nonzero) eigenvalues and
singular values, two of these four quantities may be tough tocompute. Indeed, while the largest
eigenvalue ofA λ1 and the largest singular valueσ1 of B are expected to be relatively easy to
compute at least when they are well separated from their second largest counterparts (in which case
we can effectively use, for example, a power method-type method), it is expected thatλn−m and
σm would be significantly harder to compute.

4. NUMERICAL EXPERIMENTS

We gauge the accuracy of our estimation of the condition number for varyingγ and the desired value
of the optimalγ by presenting two numerical examples. The first one deals with a well-conditioned
matrix, and our bounds are shown to be remarkably tight. The second example is one of an ill-
conditioned matrix, where we see that while the bounds are not as tight, they still capture the trend.

Example 4.1
The matricesA andB arise from the finite element method being applied to solvingthe time-
harmonic Maxwell’s equation [11]; A is 6080× 6080 and it represents a discrete curl-curl operator,
andB represents a discrete divergence operator and is of dimensions1985× 6080. In the results
presented below we have scaledA andB by modest multiplicative factors to better illustrate the
merits of our analysis. We haveκ(P ) = 1.67, so we see thatA andBTB have nearly orthogonal
column spaces, allowingP to be well conditioned. For our augmented matrix,

α = 3.88,

β = 1734.

We then plotκ
(

A+ γBTB
)

against our estimation of the condition number as derived inSection
2. The lower bound is taken to beκ−2 (P )κ (Σ) while the upper bound is taken to beκ2 (P )κ (Σ).
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Figure 2. Condition number of augmented leading block as a function ofγ, for a problem arising from the
discretized time-harmonic Maxwell equations.
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We can see in Figure2 the estimation ofκ
(

A+ γBTB
)

matches the actual condition number
well within an order of magnitude for both the upper and lowerbounds. In theory, we cannot expect
the variation ofκ

(

A+ γBTB
)

to be constant over the intervalα < γ < β, because our bound is
affected by the spectrum ofP . At the same time, the condition number ofΣ is definitely constant
over this interval, since we haveλn−m < γσ2

i < λ1. Pleasingly, we are seeing in Figure2 that the
variation in the condition number is minor.

We report a similar situation for our estimation ofκ (K(γ)). We have

ψ = 62.5,

ω = 1734.

As can be seen in Figure3, the eigenvalues ofA and singular values ofB allow for three distinct
regions whereκ(R) is flat, growing linearly and growing quadratically. Therefore we would be
interested in keepingγ < ψ. We note here thatψ might be zero or negative in certain instances. The
practical meaning of such cases is thatγ should be kept as small as possible for the conditioning of
the saddle-point matrix to be minimized. The choiceγ = α may work well in this case.

In both Figures2 and3, it can be seen that while Theorems2.1 and 3.1 give true bounds on
the condition numbers,κ (Σ) andκ (R) provide excellent estimates. Since[α, β] ∩ [0, ψ] 6= ∅, one
would ideally chooseγ in the range[α, ψ], which would result in minimizing the condition number
of bothA+ γBTB and the saddle-point matrix itself.
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Figure 3. Condition number of augmented saddle-point matrix as a function ofγ, for a problem arising from
the discretized time-harmonic Maxwell equations.

Example 4.2
Next, we consider a case whereP is (relatively) ill-conditioned, and investigate its effect on our
estimates. We note here that we cannot takeP to have a condition number that is overly large,
because this quantity appears in squared form in the bounds for the condition numbers ofA(γ) and
K(γ) in Theorems2.1 and3.1, respectively. Therefore, to avoid considering numerically singular
A(γ) andK(γ), we need to settle forP whose condition number is smaller than the square root of
the roundoff unit.
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We take a random1000× 1000 matrix forA and a random300× 1000 matrix forB, such that
κ(P ) ≃ 8 · 106. We have thatκ(A+ γBTB) ≥ 1014. For theseA andB, we have

α = 0.4,

β = 9.7,

and we plotκ(A+ γBTB) in Figure4. (Note thatα andβ are independent of the condition number
of P .)
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Figure 4. Condition number of ill-conditionedA+ γBTB for randomA andB over varyingγ.

We can make some observations about the quality of the estimation for ill-conditionedP in Figure
4 as compared to a well-conditionedP in Figure2. As expected, the large condition number ofP

results in the true condition number is better estimated by the upper bound ofκ(Σ)κ(P )2 than just
κ(Σ). The asymptotics for small and largeγ still grow like γ−1 andγ respectively; however the
transition regions for the condition numbers are not as welldefined as they are in Figure2. With
α ≤ γ ≤ β, we expectκ(A+ γBTB) to be fairly constant, but instead optimality occurs at the slight
dip whereγ ≈ α+β

2 .
Next, we plotκ(K(γ)) in Figure5. For this case we have

ψ = 0,

ω = 4.9.

These values are small and do not depend onγ or onκ(P ), and sinceψ = 0, no constraint is imposed
in relation to the eigenvalues ofA and the singular values ofB.

Similarly to the situation forA(γ) we see that whileκ(R) no longer accurately capturesκ(K(γ)),
our bounds very well trap the condition number. Interestingly, the slope of the computed condition
number no longer follows that of the bounds.
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Figure 5. Condition number of ill-conditionedκ(K(γ)) for randomA andB over varyingγ.

5. CONCLUDING REMARKS

We have developed conditions for minimizing the condition numbers ofA(γ) andK(γ), which
depend on the extremal nonzero eigenvalues ofA and singular values ofB. We have also established
conditions for a joint domain where both condition numbers are minimized.

Our approach applies to the case of maximal nullity of the leading block. While this a restriction,
it does represent a number of interesting applications [6], and in our experiments, the region of
minimized condition numbers is predicted in a tight and precise fashion.

Our analysis straightforwardly extends to the nonsymmetric case, under the same rank
assumptions on the matricesA andB. If A were to be nonsymmetric, then its eigendecomposition
in (8) would be replaced by the singular value decompositionA = USV T , and we would have
A(γ) = PΣQT whereP = [U Z] andQ = [V Z]. Theorems2.1 and3.1 would then be adjusted
accordingly in a seamless fashion.

Another potentially interesting issue to explore may be a situation where the the rank of the
leading block is slightly larger thann−m. Under that scenario, our analysis (and our reliance on
quasi-direct sums) can no longer be carried out, but using eigenvalue interlacing arguments may
still provide a way to find an effective approximation to the optimalγ. We leave this as an item for
future investigation.
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