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Abstract. We introduce SPMR, a new family of methods for iteratively solving saddle-point4
systems using a minimum or quasi-minimum residual approach. No symmetry assumptions are made.5
The basic mechanism underlying the method is a novel simultaneous bidiagonalization procedure that6
yields a simplified saddle-point matrix on a projected Krylov-like subspace, and allows for a mono-7
tonic short-recurrence iterative scheme. We develop a few variants, demonstrate the advantages of8
our approach, derive optimality conditions, and discuss connections to existing methods. Numerical9
experiments illustrate the merits of this new family of methods.10
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1. Introduction. Consider the problem of iteratively solving large and sparse14

saddle-point systems of the form15

ˆ

A GT
1

G2 0

˙ˆ

x
y

˙

“

ˆ

f
g

˙

,(1)16

where A P Rnˆn, G1, G2 P Rmˆn, f P Rn, and g P Rm. We assume, as is typically the
case in most applications, that m ă n. Throughout our discussion we will denote the
matrix of (1) by K:

K “
ˆ

A GT
1

G2 0

˙

.

Saddle-point systems arise in a large variety of applications, and numerical solu-17

tion methods have been extensively explored [5, 7, 33]. But there are relatively few18

solvers that have been tailored specifically to the block structure of these systems.19

Rather, general iterative solvers are typically used, and exploiting the block structure20

is often reserved to the preconditioning stage. Our goal is to develop solvers for (1)21

that take into account the block structure of the matrix K. We are interested in the22

most generic setting here, i.e., we allow A to be any matrix (from symmetric positive23

definite to symmetric indefinite to nonsymmetric), and allow G1 ‰ G2.24

We introduce a family of short recurrence solvers that are based on residual25

norm minimization or quasi-minimization, and call this family SPMR: Saddle-Point26

Minimum Residual.27

One of the innovations that we offer in the derivation of SPMR is the bidiagonal-28

ization of the two off-diagonal block matrices, G1 and G2, using a procedure similar29

in spirit to the generalized Golub-Kahan bidiagonalization [2, 3, 15], along with a30

simultaneous diagonalization of A.31

Solving saddle-point systems is a challenging task, and numerical methods typi-32

cally involve potentially costly interim computations, such as inversion or the compu-33

tation of a null space. The SPMR family can be split into two main sub-families: (i)34
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methods that require the inversion of A, and (ii) methods that use null spaces of G135

and G2. The first set of methods, (i), is restricted to situations where A is invertible36

and the inversion operation is computationally inexpensive. These methods implicitly37

solve linear systems associated with the Schur complement,38

(2) S “ G2A
´1GT

1 .39

The second set of methods, sub-family (ii), may be appealing when the null spaces of40

G1 and G2 are relatively easy to detect or when we have basis-free procedures that41

can efficiently utilize these null spaces. These methods implicitly solve linear systems42

associated with43

(3) R “ HT
1 AH2,44

where H1 and H2 are such that G1H1 “ G2H2 “ 0. We call R the generalized reduced45

Hessian, because it generalizes the notion of the reduced Hessian in optimization,46

when A is symmetric, G1 “ G2 and (1) arises from a quadratic programming problem47

[23].48

SPMR projects the given saddle-point matrix onto a smaller subspace where the49

(projected) matrix has a simple saddle-point block structure. In this regard, it is50

similar to the augmented system interpretation of LSQR [24] and LSMR [11]. We51

provide a characterization of the search space, show connections to other methods52

such as USYMQR [27], and apply an optimality criterion similar to the approach53

taken in the development of QMR [13]. In the specific case that A is symmetric54

positive definite and G1 “ G2, our solvers reduce to the generalized LSQR developed55

by Arioli & Orban, the Projected Conjugate Gradient method developed by Hribar,56

Gould and Nocedal, and related solvers [3, 16, 17].57
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Fig. 1: Various versions of SPMR.

Fig. 1 is a schematic of the SPMR family: ‘SC’ stands for Schur complement,58

and ‘NS’ stands for null-space. SPMR and SPQMR differ from each other by the59

choice of residual minimization or quasi-minimization, respectively, when solving the60

relevant subproblem. As common for iterative solvers, this difference can also be61

characterized by orthogonalization vs. bi-orthogonalization; consider for example62

USYMQR vs. QMR.63
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In Section 2 we describe the basic principles of SPMR, including details on the64

bidiagonalization procedure that forms the core of our approach. Sections 3 and 465

provide the derivations of the two sub-families of SPMR: SPMR-SC, which requires the66

inversion of A, and SPMR-NS, which requires computation of the null spaces of G1 and67

G2. In Section 5 we discuss properties of the SPMR solvers. In Section 6 we develop68

a variant that we call SPQMR, which relies on residual quasi-minimization. Here69

again, we offer two variants, SPQMR-SC and SPQMR-NS. In Section 7 we address the70

important issue of preconditioning and introduce preconditioned versions of SPMR and71

its variants. In Section 8 we show a few examples that illustrate the various features72

of our new family of methods. Finally, in Section 9 we draw some conclusions.73

We use standard Householder’s notation throughout (capital letters for matrices,74

lower-case letters for vectors, and Greek letters for scalars), and unless otherwise75

stated, the notation } ¨ } signifies the `2 vector norm.76

2. SPMR. We now derive SPMR and its variants. As we shall see, the core of77

our algorithms is a Lanczos-like procedure called SIMBA.78

2.1. Right Hand Side Setting. It is convenient to set the right-hand side79

in correlation with the family members that we choose to use. If A is efficiently80

invertible, general right-hand sides pfT , gT qT can be handled by solving Ax̂ “ f , and81

then solving82
ˆ

A GT
1

G2 0

˙ˆ

x1

y

˙

“

ˆ

0
g ´G2x̂

˙

, x “ x1 ` x̂.83
84

We could therefore assume in this case, without loss of generality, that we need85

to solve systems of the form86

(4)

ˆ

A GT
1

G2 0

˙ˆ

x
y

˙

“

ˆ

0
g

˙

,87

and proceed to develop methods in the ‘SC’ sub-family. Like the generalized LSQR88

method [3], we are constrained to solve systems with a zero block, which means that89

it is necessary to form g ´G2x̂ on the right-hand side.90

On the other hand, if we are solving with general right-hand side pfT , gT qT and91

we wish to avoid inverting A, if we are able to find a particular solution G2x̂ “ g,92

then we can instead solve93
ˆ

A GT
1

G2 0

˙ˆ

x1

y

˙

“

ˆ

f ´Ax̂
0

˙

, x “ x1 ` x̂.94
95

We can then focus on saddle-point systems of the form96

(5)

ˆ

A GT
1

G2 0

˙ˆ

x
y

˙

“

ˆ

f
0

˙

.97

In this case it is possible to have A singular, and our focus will be on developing98

‘NS’-type methods, which require using the null spaces of G1 and G2.99

2.2. The Dual Saddle-Point System. Let H1 and H2 be null-space bases so100

that G1H1 “ G2H2 “ 0. From (5) we can see that since G2x “ 0, then x “ H2q for101

some q. Furthermore, if we consider the first equation Ax`GT
1 y “ f , we can see that102

by applying HT
1 from the left, we get103

(6)
HT

1 f “ HT
1 Ax`H

T
1 G

T
1 y

“ HT
1 AH2q “ Rq,

104
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where R is the generalized reduced Hessian defined in (3).105

If A were invertible, then we could recognize (6) as the range-space method (re-106

ferred to also as the Schur complement method) applied to the dual saddle-point107

system, described in [5]:108

(7)

ˆ

A´1 H2

HT
1 0

˙ˆ

p̃
q

˙

“

ˆ

0
´HT

1 f

˙

.109

Notice also that in that case, if A were invertible, (6) would be equivalent to the
system

HT
1 f “ pH

T
1 AqA

´1pAH2qq.

But the above is nothing but the system corresponding to the range-space method110

applied to the saddle-point system111

(8)

ˆ

A AH2

HT
1 A 0

˙ˆ

p
q

˙

“

ˆ

0
´HT

1 f

˙

.112

We call (8) the inverse-free dual saddle-point system, and we will denote the matrix
by

KD “

ˆ

A AH2

HT
1 A 0

˙

.

Moving forward, we will use the shorthand expression “dual system” in reference to113

(8) rather than (7), since the need to use an inverse-free version is central. A key114

point here is that once we have defined this dual system, there is no longer a need to115

assume that A is invertible, even though we assumed that in order to obtain (8).116

At first glance, it would appear that the system in (8) has some issues pertaining117

to singularity: if either A or the Hi are singular, then the system itself is singular.118

Let us alleviate those concerns with the following theorem.119

Theorem 1. Suppose that K is nonsingular, without further assumptions on A.
Let x and y be the unique solution to (5). Then there exists a solution to (8) such
that p P kerpG2q. For this p, we can recover x and y, as follows: set x “ ´p and
obtain y from the consistent overdetermined system

GT
1 y “ f `Ap “ f ´Ax.

Proof. We first show that there exists p P kerpG2q which solves (8). Note that120

there exist unique x, y which solve (5) since K is nonsingular, and that x “ H2q P121

kerpG2q for the q chosen in (6); we therefore choose p “ ´x and show that this choice122

satisfies (8). We have123

ˆ

A AH2

HT
1 A 0

˙ˆ

p
q

˙

“

ˆ

´AH2q `AH2q
´HT

1 AH2q

˙

“

ˆ

0
´Rq

˙

“

ˆ

0
´HT

1 f

˙

,124
125

so this choice of p P kerpG2q and q indeed solves (8).126

We now show that if p P kerpG2q and p, q solve (8), then x “ ´p solves (5) and127

GT
1 y “ f ´Ax is consistent. We have G2x “ 0 since x “ ´p P kerpG2q, and from (8)128

we have129

0 “ HT
1 pf `Apq “ HT

1 pf ´Axq,130131

so that f ´Ax P kerpHT
1 q “ rangepGT

1 q; therefore GT
1 y “ f ´Ax is consistent.132
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2.3. SIMBA: Simultaneous Bidiagonalization via A-Conjugacy. A cor-133

nerstone of our method is a technique of simultaneous bidiagonalization. We construct134

a projected subspace that includes a diagonal reduction of the leading block and bidi-135

agonalized versions of the off diagonal blocks. We call it SIMBA: Simultaneous136

Bidiagonalization via A-conjugacy.137

SIMBA

has two variants: one that relies on inverting A (when applicable), and one that138

relies on null spaces of G1 and G2. In the latter case A may be singular, and we will139

turn to using the dual system, (8).140

Define141

Bk “

¨

˚

˚

˚

˚

˚

˝

α1

β2 α2

. . .
. . .

βk αk

βk`1

˛

‹

‹

‹

‹

‹

‚

“

ˆ

Lk

βk`1e
T
k

˙

(9)142

and143

Ck “

¨

˚

˚

˚

˚

˚

˝

γ1

δ2 γ2

. . .
. . .

δk γk
δk`1

˛

‹

‹

‹

‹

‹

‚

“

ˆ

Mk

δk`1e
T
k

˙

.(10)144

We will construct bases145

(11)
Uk “ ru1 . . . uks, Vk “ rv1 . . . vks,

Wk “ rw1 . . . wks, Zk “ rz1 . . . zks,
146

where the construction depends on whether we use A inversions, or whether we rely147

on null spaces of G1 and G2.148

2.3.1. SIMBA-SC: Using A Inversion. Suppose that A is invertible, and that149

inverting A is computationally inexpensive and may be done throughout the iteration.150

We construct the matrices specified in (9)-(11) such that the following relations are151

satisfied:152

(12)

GT
1Vk “ AUkJkL

T
k , WT

kAUk “ Jk,

G1Wk “ Vk`1Bk, V T
k Vk “ I,

GT
2 Zk “ ATWkJkM

T
k , ZT

kZk “ I,

G2Uk “ Zk`1Ck,

153

where Jk is diagonal such that pJkqj,j “ ξj “ ˘1.154

In the case where A is symmetric and G1 “ G2, we will have Uk “ Wk and155

Vk “ Zk, allowing us to cut the computational and storage requirements in half. This156

is because even if A is indefinite, by Silvester’s Law of Inertia, we use Jk to absorb157

the indefiniteness of UT
n AUn.158

The above relations lead to Algorithm 1, which in exact arithmetic produces or-159

thogonal Vk, Zk, and biconjugate Uk,Wk. This is one variant of the SIMBA procedure,160

which we call SIMBA-SC, because it relies an implicit construction of the Schur com-161

plement, S. We describe the algorithm using separate columns for the computation162

of uk, vk and wk, zk to highlight the symmetry between the two pairs of vectors.163
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Algorithm 1 SIMBA-SC: Simultaneous Bidiagonalization via A-conjugacy, using A
inversion and an implicit construction of the Schur complement.

INPUT: A, G1, G2, b, c
// Recall that }vk} “ }zk} “ 1 for all k

β1v1 Ð b δ1z1 Ð c

û1 Ð GT
1v1 ŵ1 Ð GT

2z1

u1 Ð A´1û1 w1 Ð A´T ŵ1

ξ1 Ð sgnpwT
1 û1q

α1 Ð |wT
1 û1|

1{2 γ1 Ð α1

u1 Ð ξ1u1{α1 w1 Ð ξ1w1{γ1

for k “ 1, 2, . . . do

βk`1vk`1 Ð G1wk ´ αkvk δk`1zk`1 Ð G2uk ´ γkzk
ûk`1 Ð GT

1vk`1{βk`1 ŵk`1 Ð GT
2zk`1{δk`1

uk`1 Ð A´1ûk`1 ´ ξkβk`1uk wk`1 Ð A´T ŵk`1 ´ ξkδk`1wk

ξk`1 Ð sgnpwT
k`1ûk`1q

αk`1 Ð |wT
k`1ûk`1|

1{2 γk`1 Ð αk`1

uk`1 Ð ξk`1uk`1{αk`1 wk`1 Ð ξk`1wk`1{γk`1

end for

2.3.2. SIMBA-NS: Using Null Spaces of G1 and G2. Suppose now that164

computing null spaces of G1 and G2 is computationally viable, whereas inverting A165

is not computationally attractive or is impossible due to singularity. We first notice166

that mathematically, if A is invertible, when we apply SIMBA-SC in Algorithm 1 to167

the dual system in (8), all inverses by A and AT will cancel with the off-diagonal168

blocks AH2 and ATH1. It is thus possible to derive an A inversion-free version of169

SIMBA-SC. This version requires the availability of the null spaces of G1 and G2.170

Suppose H1 and H2 are given, such that G1H1 “ 0 and G2H2 “ 0. We define171

Bk as in (9) and Ck as in (10), and then construct bases as in (11), but with (12)172

replaced by173

(13)

H2Vk “ UkJkL
T
k , WT

kAUk “ Jk,

HT
2 A

TWk “ Vk`1Bk, V T
k Vk “ I,

H1Zk “WkJkM
T
k , ZT

kZk “ I,

HT
1 AUk “ Zk`1Ck,

174

where again Jk is diagonal such that pJkqj,j “ ξj “ ˘1.175

Algorithm 2 thus gives us an alternative formulation of SIMBA. We call it176

SIMBA-NS, to mark its reliance on null spaces.177

2.4. Characterization of the Search Subspace. The following theorem states178

that Algorithm 1 and Algorithm 2 produce the desired bidiagonalizations. The proof179

of this theorem is by induction, similarly to the way the Lanczos method is derived,180

and is omitted for the sake of brevity.181

Theorem 2. In exact arithmetic, the vectors generated by Algorithm 1 and Al-182

gorithm 2 satisfy the relationships in (12) and (13), respectively.183

The construction makes it clear that the simultaneous bidiagonalization is unique184

up to the choice of starting vectors v1 and z1, and the choice in the relative scaling185

6
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Algorithm 2 SIMBA-NS: Simultaneous Bidiagonalization via A-conjugacy, using the
null spaces of G1 and G2, namely H1 and H2 such that G1H1 “ 0 and G2H2 “ 0.

INPUT: A, H1, H2, b, c
// Recall that }vk} “ }zk} “ 1 for all k

β1v1 Ð b δ1z1 Ð c
u1 Ð H2v1 w1 Ð H1z1

û1 Ð Au1 ŵ1 Ð ATw1

ξ1 Ð sgnpwT
1 û1q

α1 Ð |wT
1 û1|

1{2 γ1 Ð α1

u1 Ð ξ1u1{α1 w1 Ð ξ1w1{γ1

for k “ 1, 2, . . . do

βk`1vk`1 Ð HT
2 ŵk{γk ´ αkvk δk`1zk`1 Ð HT

1 ûk{αk ´ γkzk
uk`1 Ð H2vk`1{βk`1 ´ ξkβk`1uk wk`1 Ð H1zk`1{δk`1 ´ ξkδk`1wk

ûk`1 Ð Auk`1 ŵk`1 Ð Awk`1

ξk`1 Ð sgnpwT
k`1ûk`1q

αk`1 Ð |wT
k`1ûk`1|

1{2 γk`1 Ð αk`1

uk`1 Ð ξk`1uk`1{αk`1 wk`1 Ð ξk`1wk`1{γk`1

end for

and sign of αk and γk. We choose to set αk “ γk ą 0.186

Let us characterize the subspace which each of the bases specified in SIMBA-SC187

and SIMBA-NS span. For notational convenience, let us denote by T either the Schur188

complement in the case of SIMBA-SC or the generalized reduced Hessian in the case189

of SIMBA-NS. That is,190

(14) T ”

"

S, defined in (2), if SIMBA-SC is considered,
R, defined in (3), if SIMBA-NS is considered.

191

192

Theorem 3. Let T denote either S or R, as specified in (14). Let β1v1 “ b and193

δ1z1 “ c. Then the basis vectors generated in Algorithm 1 and Algorithm 2 satisfy194

v2k P span
 

b, TTTb, . . . , pTTT qk´1b, TT c, TTTTT c, . . . , pTTT qk´1TT c
(

,195

v2k`1 P span
 

b, TTTb, . . . , pTTT qkb, TT c, TTTTT c, . . . , pTTT qk´1TT c
(

,196

z2k P span
 

c, TTT c, . . . , pTTT qk´1c, T b, TTTTb, . . . , pTTT qk´1Tb
(

,197

z2k`1 P span
 

c, TTT c, . . . , pTTT qkc, T b, TTTTb, . . . , pTTT qk´1Tb
(

.198199

For SIMBA-SC the basis vectors satisfy

uk P span
 

A´1GT
1 Vk

(

; wk P span
 

A´TGT
2 Zk

(

,

and for SIMBA-NS the basis vectors satisfy

uk P span tH2Vku ; wk P span tH1Zku .

Proof. The result follows by induction on k.200

Notice that these spaces are not quite Krylov subspaces, but rather an interleaving201

of two Krylov subspaces related to SST and STS in the case of SIMBA-SC, and an202

interleaving of two Krylov subspaces related to RRT and RTR for SIMBA-NS. Each203

iteration alternates between an application of S or ST in one case and R or RT in204

the other, rather than repeated applications of the same operator.205
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2.5. Relationship to Orthogonal Tridiagonalization of the Schur Com-206

plement. We demonstrate that in exact arithmetic SIMBA-SC applied to K is math-207

ematically equivalent to applying orthogonal tridiagonalization to the Schur comple-208

ment, S “ G2A
´1GT

1 . It is worth stressing that in ill-conditioned cases, as we show209

in the numerical experiments, SIMBA-SC may be more numerically stable than di-210

rectly applying orthogonal tridiagonalization to the Schur complement. This result211

is analogous to the way in which applying Golub-Kahan is more numerically stable212

than applying Lanczos to the normal equations [11, 24].213

Recall that orthogonal tridiagonalization generates two orthogonal bases V Q
k , ZQ

k

such that
pZQ

k`1q
TSV Q

k “ sTk,

where sTk P Rpk`1qˆk is tridiagonal. It was further shown in [27] that ZQ and V Q214

(and therefore sTk) are unique up to the choice of vQ1 and zQ1 .215

Suppose that v1 “ vQ1 and z1 “ zQ1 . Using Vk and Zk generated by SIMBA-SC,216

we have that217

SVk “ G2A
´1GT

1 Vk218

“ G2A
´1AUkJkL

T
k219

“ G2UkJkL
T
k220

“ Zk`1CkJkL
T
k .221222

Since Ck and LT
k are lower and upper bidiagonal respectively, and Jk is diagonal, then223

CkJkL
T
k is tridiagonal. Therefore by [27, Theorem 1], this is the unique tridiagonal-224

ization of S, and thus Zk “ ZQ
k , Vk “ V Q

k and sTk “ CkJkL
T
k .225

Note that the above also applies to SIMBA-NS, as it is equivalent to orthogonal226

tridiagonalization of the generalized reduced Hessian. This equivalence between or-227

thogonal tridiagonalization and SIMBA will allow us to explore relationships between228

members of the SPMR family and existing iterative methods.229

3. SPMR-SC: an A-inversion Version of SPMR. We are now ready to derive230

members of the SPMR family, which rely on the SIMBA process. We will start with231

the version that involves inversion of A. Suppose indeed that A is invertible. Armed232

with Algorithm 1, we can observe the following relations. Define233

(15) Kk “

ˆ

Jk LT
k

Ck 0

˙

,234

and note that235
ˆ

A GT
1

G2 0

˙ˆ

Uk 0
0 Vk

˙

“

ˆ

AUkJk 0
0 Zk`1

˙ˆ

Jk LT
k

Ck 0

˙

.(16)236
237

As mentioned at the outset of Section 2, if A is assumed (easily) invertible and we238

pursue a method based on using A´1, then it makes sense to consider a right-hand239

side vector of the form p0T , gT qT . Let the iterates be xk “ Ukx̄k and yk “ Vkȳk, so240

that241
ˆ

A GT
1

G2 0

˙ˆ

xk
yk

˙

´

ˆ

0
g

˙

“

ˆ

A GT
1

G2 0

˙ˆ

Uk 0
0 Vk

˙ˆ

x̄k
ȳk

˙

´

ˆ

0
g

˙

242

“

ˆ

AUkJk 0
0 Zk`1

˙ˆ

Kk

ˆ

x̄k
ȳk

˙

´

ˆ

0
δ1e1

˙˙

.243
244
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It is then reasonable to adopt a quasi-minimum residual approach [13] and choose xk245

and yk which satisfy246

(17) min
x,y

›

›

›

›

Kk

ˆ

x̄
ȳ

˙

´

ˆ

0
δ1e1

˙
›

›

›

›

s.t. x “ Ukx̄, y “ Vkȳ.247

3.1. Construction of Short Recurrences. We now make some observations
about the subproblem for generating x̄k and ȳk. In order to solve subproblem (17)
we use the QR decomposition of Kk (defined in (15)). Note that if we permute the
blocks of Kk to

ˆ

LT
k Jk
0 Ck

˙

,

the above matrix is almost upper-triangular, except that we need to form the QR248

decomposition of Ck. Therefore, we can solve for xk first, and recover yk afterwards,249

so that an equivalent subproblem to (17) is250

(18) min
x
}Ckx̄´ δ1e1} s.t. x “ Ukx̄.251

Subproblem (18) is similar to the LSQR subproblem, which is solved by taking the252

QR factorization of a bidiagonal system. Many of the following recurrence relations253

for recovering xk can be found in [24].254

3.2. Recurrence for xk. We begin computing the QR decomposition of Ck255

using the 2 2̂ reflector256
ˆ

c1 s1

s1 ´c1

˙ˆ

γ1 δ1
δ2 γ2

˙

“

ˆ

ρ1 σ1 φ1

ρ̄2 φ̄2

˙

,257
258

and further reflectors defined by259
ˆ

ck sk
sk ´ck

˙ˆ

ρ̄k φ̄k
δk`1 γk`1

˙

“

ˆ

ρk σk`1 φk
ρ̄k`1 φ̄k`1

˙

.260
261

From this we obtain the QR decomposition262

rMk`1 δ1e1s “ Qk

¨

˚

˚

˚

˚

˚

˝

ρ1 σ2 φ1

ρ2 σ3 φ2

. . .
. . .

...
ρk σk`1 φk

ρ̄k`1 φ̄k`1

˛

‹

‹

‹

‹

‹

‚

“ Qk

ˆ

Rk σk`1ek ϕk

ρ̄k`1 φ̄k`1

˙

.263

264

We define ϕk “ pφ1, . . . , φkq
T and Q̄k as the first k columns of Qk, so that x̄k “

R´1
k Q̄T

k δ1e1. Then, if we define Dk “ UkR
´1
k , we have

xk “ Ukx̄k “ pUkR
´1
k qpQ̄T

k δ1e1q “ Dkϕk “ xk´1 ` φkdk.

Computation of dk is accomplished via forward substitution, since

pu1, . . . , uk´1, ukq “ pd1, . . . , dk´1, dkq

¨

˚

˚

˚

˚

˝

ρ1 σ2

ρ2
. . .

. . . σk
ρk

˛

‹

‹

‹

‹

‚

,

so that dk “ puk ´ σkdk´1q{ρk. As done in LSQR, these recurrence relations can be265

further simplified if we define dk Ð ρkdk.266
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3.3. Recurrence for yk. We can recover yk with a little bit of extra work every267

iteration, rather than recovering y at termination. Define Tk “ pt1, . . . , tkq, so that268

yk “ Vkȳk “ ´VkL
´T
k Jkx̄k269

“ pVkL
´T
k JkR

´1
k qp´Q̄T

k δ1e1q270

“ Tkp´ϕkq271

“ yk´1 ´ φktk.272273

Since Jk and φk are already computed, we need only compute Tk. Define

RkJkL
T
k “

¨

˚

˚

˚

˚

˚

˝

λ1 µ2 ν3

. . .
. . .

. . .

λk´2 µk´1 νk
λk´1 µk

λk

˛

‹

‹

‹

‹

‹

‚

,

which is updated column by column every iteration, since Rk and LT
k are upper274

bidiagonal. In particular, the recurrence relations are275

λk “ ρkξkαk, k ě 1,276

µk “ ρk´1ξk´1βk ` σkξkαk, k ě 2,277

νk “ σk´1ξk´1βk, k ě 3.278279

Since Vk “ TkpRkJkL
T
k q, we have

`

v1, . . . , vk´2, vk´1, vk
˘

“
`

t1, . . . , tk´2, tk´1, tk
˘

¨

˚

˚

˚

˚

˚

˝

λ1 µ2 ν3

. . .
. . .

. . .

λk´2 µk´1 νk
λk´1 µk

λk

˛

‹

‹

‹

‹

‹

‚

,

which means that tk “ pvk ´ µktk´1 ´ νktk´2q{λk.280

3.4. Estimating the Residual. We can estimate the residual at every iteration281

cheaply. Define r̄k “ δ1e1 ´ Ckx̄k, and rk “ Zk`1r̄k, and note that by the definition282

of ȳk,283

(19)

ˆ

0
g

˙

´

ˆ

A GT
1

G2 0

˙ˆ

xk
yk

˙

“

ˆ

AUkJk 0
0 Zk`1

˙ˆˆ

0
δ1e1

˙

´

ˆ

Jk LT
k

Ck 0

˙ˆ

x̄k
ȳk

˙˙

“

ˆ

AUkJk 0
0 Zk`1

˙ˆ

0
r̄k

˙

“

ˆ

0
rk

˙

.

284

Since Zk is orthogonal, the norm of the full residual is equal to }r̄k} “ }rk}.285

The immediate consequence is that since }r̄k} decreases monotonically by the286

definition of subproblem (18), the full residual must decrease monotonically as well.287

We summarize this result in the following theorem.288

Theorem 4. The norm of the residual given on the left hand side of (19) de-289

creases monotonically every iteration of SPMR-SC.290
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Since the residual norm is equal to }G2xk ´ g}, we can estimate the residual as291

}r̄k} “ φ̄k`1 “ δ1s1s2 . . . sk, as is done in LSQR.292

Monotonicity of the residual is an attractive property for nonsymmetric problems,293

as it may provide a notion of robustness and predictability. There is a potential294

advantage here from a computational point of view: short recurrences are not given295

up as in GMRES [26] to acquire this monotonicity, nor do the short recurrences give296

up the monotonicity as in biconjugate based methods.297

3.5. Relationship Between SPMR-SC and USYMQR. In subsection 2.5,298

we showed the mathematical equivalence between SIMBA and orthogonal tridiagonal-299

ization. Using this, we can now show that SPMR is equivalent to USYMQR applied300

to the Schur complement system ´Sy “ g.301

Recall that both SIMBA and orthogonal tridiagonalization generate the same basis302

(in exact arithmetic) such that303

SVk “ Zk`1
sTk “ Zk`1CkJkL

T
k ,304305

where sTk “ CkJkL
T
k P Rpk`1qˆk is tridiagonal. USYMQR solves the subproblem306

yQk “ arg min
y

} ´ CkJkL
T
k ȳ ´ δ1e1} s.t. y “ Vkȳ.307

308

Recall that x̄k “ ´JkL
T
k ȳk in SPMR-SC, and recall that (from (18)) SPMR-SC solves309

yk “ arg min
y

}Ckx̄´ δ1e1} s.t. x̄ “ ´JkL
T
k ȳ, y “ Vkȳ.310

311

These are the same subproblems, and so we obtain that yk “ yQk every iteration,312

meaning that SPMR-SC and USYMQR generate the same iterates in exact arithmetic.313

This result is analogous to the equivalence between LSQR and CG on the normal314

equations [24], or LSMR and MINRES on the normal equations [11]. However, numer-315

ically we may have the upper hand. As in the cases just mentioned, we observe that316

SPMR-SC can be more numerically stable than USYMQR applied an ill-conditioned317

Schur complement, which we demonstrate in section 8.318

4. SPMR-NS: a Null-Space Based Version of SPMR. SPMR-SC as it has319

been introduced so far, requires the inversion of the matrix A. This matrix may320

not always be invertible, and even when it is, the inversion may be computationally321

prohibitive. We now introduce a sub-family of SPMR which avoids inverting A, and322

instead opts for using the null spaces of G1 and G2. ‘NS’ stands for null-space, since323

we are projecting onto the null spaces of G1 and G2.324

SPMR-NS is basically SPMR-SC applied to the dual system (8). What makes325

it interesting is the fact that by using the dual system we are able to eliminate326

dependence on the inversion of A, and instead rely on the null spaces of G1 and327

G2.328

We can define the same subproblem on the dual saddle-point system to minimize329

the residual (of the dual system), and use the same recurrences to obtain approxima-330

tions pk and qk at each iteration.331

It should be noted that this method will only obtain approximations to xk “ ´pk332

at every iteration, but y needs to be recovered after convergence by solving a least-333

squares problem with GT
1 . This is consistent with the situation in PPCG and other334

projected methods [16, 17].335
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SPMR-NS is thus equivalent to USYMQR applied to the generalized reduced Hes-336

sian defined in (3), for the same reasons that SPMR-SC is equivalent to USYMQR337

applied to the Schur complement. We note that in [1, 4], iterative procedures for338

symmetric systems are proposed, which apply the conjugate gradient method to var-339

ious constructions of the reduced Hessian. This is related to SPMR-NS, which in the340

symmetric case is equivalent to applying MINRES to the reduced Hessian.341

4.1. Estimating the Residual. Just as in SPMR-SC, the residual norm in the342

dual saddle-point system can be estimated cheaply. Define343

(20)

ˆ

0
rNk

˙

“

ˆ

0
´HT

1 f

˙

´

ˆ

A AH2

HT
1 A 0

˙ˆ

pk
qk

˙

and

ˆ

rk
0

˙

“

ˆ

f
0

˙

´

ˆ

A GT
1

G2 0

˙ˆ

xk

yk

˙

,344

as the dual and original residuals respectively. The zero block in the dual residual345

follows from a derivation almost identical to (19). The zero block in the original346

residual follows from the fact that xk P kerpG2q for all k.347

We can relate }rNk } to an energy semi-norm of rk, where the semi-norm is in fact348

a norm on the null-space of G1. We’ll see that rk P kerpG1q, and therefore if rNk Ñ 0,349

this will imply that rk Ñ 0. This is captured in the following theorem.350

Theorem 5. Let pk and qk be generated by SPMR-NS. Suppose xk “ ´pk and let
yk solve the least-squares problem GT

1 y “ f ´ Axk. Define the residuals as in (20).
Then

}rNk } “ |rk|H1HT
1
,

where |¨|H1HT
1

is a semi-norm defined by |u|H1HT
1
“

`

uT pH1H
T
1 qu

˘
1
2 . In particular,351

rk P kerpG1q, and so this energy semi-norm induces a valid norm on the residuals.352

Proof. We have353

}rNk } “ } ´H
T
1 f ´H

T
1 Apk}354

“
›

›HT
1 pf ´Axkq

›

›355

“
›

›HT
1

`

f ´Axk ´G
T
1 yk

˘
›

›356

“ }HT
1 rk}357

“ |rk|H1HT
1
,358

359

where we used that G1H1 “ 0. Now, since yk is defined by the least-squares solution360

to GT
1 y “ f ´Axk, the residual must be orthogonal to the range space of GT

1 , which361

means that rk P kerpG1q. Since rk P kerpG1q, then rNk Ñ 0 implies rk Ñ 0, which362

means that the semi-norm is in fact a valid norm on the residual.363

Thus, even though we do not have access to the `2-norm of the original residual,364

we can obtain a measure of convergence using the residual norm of the dual system.365

Furthermore, as discussed in the following section, many of the approaches for com-366

puting projections (matrix vector products with Hi and HT
i ) result in H1H

T
1 being367

an orthogonal projector onto the null space of G1. In such cases, we will have the368

desired property that }rNk } “ }rk}.369

4.2. Computing Projections onto the Null-Space. SPMR-NS has the at-370

tractive feature that it does not require A inversion. On the other hand, it does371

require some knowledge of the null spaces of the off-diagonal blocks, G1 and G2. In372

this section we discuss strategies for dealing with matrix-vector products with these373

null-spaces.374

12

This manuscript is for review purposes only.



The simplest approach is to have a null-space bases Hi available for each off-375

diagonal block Gi, i “ 1, 2. Then products of the form Hic, and HT
i c can be computed376

explicitly, and SPMR-NS can be carried out exactly as SPMR-SC would be applied377

to the dual saddle-point system. Although this would be the simplest approach to378

implementing SPMR-NS, it may be expensive to compute a null-space basis, and this379

basis would likely be dense.380

Another possibility is to use the method outlined in [16], by computing an or-381

thogonal projection. That is, matrix-vector products of the form Hic and HT
i c are382

replaced by pI´GT
i pGiG

T
i q
´1Giqc. This requires one solve against GiG

T
i per applica-383

tion, which is only of size mˆm, and is therefore manageable in many applications.384

An equivalent approach to computing the same orthogonal projector is to instead385

solve a system involving a constraint preconditioner [22]. In order to compute products386

of the form d “ pI ´GT
i pGiG

T
i q
´1Giqc, we can instead solve the system387

(21)

ˆ

I GT
i

Gi 0

˙ˆ

d
˚

˙

“

ˆ

c
0

˙

,388

where we take only the first component of the solution. Although this computes the389

same vector, there may be more flexibility in the solution methods applied to this390

saddle-point system.391

Since the two previous approaches to computing Hix are effectively computing392

the residual to the least-squares problem GT
i d “ c, other techniques may be employed,393

such as using LSQR directly as described in [28]. This may avoid conditioning issues394

which may occur from solving the normal equations.395

It should be noted that all of the null-space basis-free approaches mentioned above396

which are effectively based on solving least-squares problems, implicitly produce an397

orthogonal projector onto the null-space of Gi. Due to this, the seminorm |¨|HiHT
i

398

becomes equivalent to the `2-norm on the null-space of Gi since HiH
T
i is an orthogonal399

projector onto said null-space. Therefore, estimating the norm of the dual system for400

SPMR-NS becomes equivalent to estimating the residual norm of the original system.401

5. Properties of the SPMR Solvers. Having derived SPMR-SC and SPMR-NS,402

we now discuss a few useful properties of these methods. Specifically, we provide403

details on the circumstances of breakdowns, and discuss the issue of convergence404

under spectrum clustering.405

5.1. Breakdowns. As in other biconjugate methods, we have the possibility of406

lucky and unlucky breakdowns. Let us again use the notation T to denote either the407

Schur complement S if SPMR-SC is considered, or the generalized reduced Hessian R408

if SPMR-NS is considered. That is,409

(22) T ”

"

S, defined in (2), if SPMR-SC is considered
R, defined in (3), if SPMR-NS is considered

410

If zk`1 “ 0 for some k, we can consider this as a lucky breakdown as it implies that411

we can reconstruct the solution to Ty “ c using v1, . . . , vk. This is because412

0 “ c` TTT c` ¨ ¨ ¨ ` pTTT qtk{2uc` Tb` TTTTb` ¨ ¨ ¨ ` pTTT qtpk´2q{2uTb413

“ c` T
´

TT c` ¨ ¨ ¨ ` pTTT qtk{2u´1TT c` b` TTTb` ¨ ¨ ¨ ` pTTT qtpk´2q{2u´1b
¯

414

“ c` T ¨ spantv1, . . . , vku.415416
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If vk`1 “ 0 for some k, this is a form of an unlucky breakdown since as it means417

that we have found a solution to the transposed system TT y “ b. If such a breakdown418

occurs, it may be possible to restart with a different v1 to avoid this breakdown in419

future iterations.420

Other unlucky breakdowns occur when wT
k Auk « 0, in the spirit of unlucky421

breakdowns for methods such as BiCG and QMR [10, 13, 32]. It is likely that we will422

be able to employ look-ahead strategies as discussed in [12, 25], although we will not423

further pursue this here.424

5.2. Convergence Under Spectrum Clustering. The speed of convergence425

of SPMR-SC or SPMR-NS is related to the distribution of singular values of T . Specif-426

ically, when the singular values are clustered we may expect fast convergence that427

depends on the number of distinct singular values.428

Theorem 6. Denote the dimension of T by t. If T has ` distinct singular values,
Algorithm 1 or Algorithm 2 will terminate in

¯̀ď minp2`, tq

steps in exact arithmetic, that is, z ¯̀̀ 1 “ 0.429

Proof. T is m-by-m if SPMR-SC is considered, and pn´mq-by-pn´mq if SPMR-NS430

is considered. SIMBA-SC (Algorithm 1) must terminate in at most m steps and431

SIMBA-NS (Algorithm 2) must terminate in at most n´m steps, since zi P Rm and432

so any m` 1 vectors must be linearly dependent. Suppose then that 2` ď t, where t433

is determined according to the method used.434

Let the left singular vectors of T be pi, and the right singular vectors be qi435

with corresponding singular values σi. Then σipi “ Tqi and σiqi “ TT pi. Thus if436

b “
ř`

i“1 ηiqi and c “
ř`

i“1 θiqi, then437

pTTT qkb “
ÿ̀

i“1

ηiσ
2k
i qi, pTTT qkTb “

ÿ̀

i“1

ηiσ
2k`1
i pi,438

pTTT qkc “
ÿ̀

i“1

θiσ
2k
i pi, pTTT qkTT c “

ÿ̀

i“1

θiσ
2k`1
i qi.439

440

Thus vectors generated by applications of T and TT , always live in the span of441

tp1, . . . , p`, q1, . . . , q`u which has dimension at most 2`. Then this means that the442

number of linearly independent zi cannot grow beyond 2` and therefore SIMBA-SC or443

SIMBA-NS must terminate in at most 2` iterations.444

The dependence of SPMR-SC and SPMR-NS on singular values of the Schur com-445

plement or the generalized reduced Hessian, as highlighted in Theorem 6, will affect446

preconditioning strategies (discussed in section 7), and may make the method attrac-447

tive over other Krylov methods in some instances. One potential situation where448

this may be beneficial is for highly non-normal T , where it is significantly easier to449

characterize the convergence based on singular values rather than eigenvalues [19].450

6. SPQMR. As we have shown in Theorem 6, the performance of the SPMR451

solvers SPMR-SC and SPMR-NS depends primarily on the distribution of the singular452

values of the Schur complement, S, or the generalized reduced Hessian, R, respec-453

tively. In many situations the distribution of eigenvalues is better understood than454

the distribution of the singular values, and eigenvalue clustering may be easier to455
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accomplish. We now introduce a variant to SPMR which we call SPQMR, whose con-456

vergence properties rely on eigenvalue distribution of either S or R. This variant457

requires sacrificing the monotonicity of the residual norm, but this may be a price458

worth paying. Like we did for SPMR, we will have two main variants: SPMR-SC459

and SPMR-NS. As we will show, SPQMR-SC is mathematically equivalent to QMR460

applied to the Schur complement, but it is numerically more stable in the sense that461

there is no effect akin to squaring the condition number. Similarly, SPQMR-NS is462

mathematically equivalent to QMR applied to the generalized reduced Hessian.463

6.1. SIMBO: Simultaneous Bidiagonalization via Bi-Orthogonality. The464

main difference between SPMR and SPQMR is in the bidiagonalization procedure,465

which replaces orthogonality of Vk and Zk with biorthogonality. We start with the466

‘SC’ version of SIMBO, which requires A inversion.467

6.1.1. SIMBO-SC: Using A Inversion. Suppose A is invertible, and inverting468

it is computationally viable. Instead of the procedure laid out for SIMBA-SC, let us469

construct bases Uk, Vk, Wk, and Zk which satisfy the relations470

(23)

GT
1Vk “ AUkJkL

T
k , WT

kAUk “ Jk,

G1Wk “ Zk`1Bk, ZT
kVk “ I,

GT
2 Zk “ ATWkJkM

T
k ,

G2Uk “ Vk`1Ck,

471

where again, Jk is diagonal such that pJkqj,j “ ξj “ ˘1. We have marked in red the472

quantities that have changed, compared to the original bidiagonalization procedure473

SIMBA-SC described in Algorithm 1 (see also (12)). Specifically, Vk`1 and Zk`1 have474

been swapped, and the requirement that Vk and Zk be orthogonal has been replaced475

by a bi-orthogonality requirement.476

This modified simultaneous bidiagonalization results in Algorithm 3. Analogously477

to Theorem 2, it can be shown that Algorithm 3 produces the desired relations in (23).478

We call this procedure SIMBO-SC.479

6.1.2. SIMBO-NS: Using Null Spaces of G1 and G2. Suppose now that480

instead of inverting A, computing the null spaces of G1 and G2 is necessary, or pre-481

ferred. As usual, let H1 and H2 be such that G1H1 “ G2H2 “ 0. Instead of the482

requirements for SIMBA-NS, we require:483

(24)

HT
2Vk “ UkJkL

T
k , WT

kAUk “ Jk,

H2AWk “ Zk`1Bk, ZT
kVk “ I,

HT
1 Zk “ ATWkJkM

T
k ,

H1AUk “ Vk`1Ck,

484

The changes have been marked in red, compared to Algorithm 2 and (13).485

6.2. Search Subspace. We can classify the spaces in which the bases live in486

Theorem 7 in a result analogous to Theorem 3.487

Theorem 7. Define T as in (22), and let β1v1 “ b, δ1z1 “ c. Then488

vk P span
 

b, T b, T 2b, . . . , T k´1b
(

,489

zk P span
 

c, TT c, pTT q2c, . . . , pTT qk´1c
(

.490491

For SPQMR-SC we have uk P span
 

A´1GT
1 Vk

(

and wk P span
 

A´TGT
2 Zk

(

, whereas492

for SPQMR-NS we have uk P span
 

HT
2 Vk

(

and wk P span
 

HT
1 Zk

(

.493
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Algorithm 3 SIMBO-SC: Simultaneous Bidiagonalization via Bi-Orthogonality, Us-
ing A Inversion

INPUT: A, G1, G2, b, c

v1 Ð b z1 Ð c

δ1 Ð sgnpvT1 z1q
`

|vT1 z1|
˘1{2

β1 Ð
`

|vT1 z1|
˘1{2

v1 Ð v1{δ1 z1 Ð z1{β1

û1 Ð GT
1v1 ŵ1 Ð GT

2z1

u1 Ð A´1û1 w1 Ð A´T ŵ1

ξ1 Ð sgnpwT
1 û1q

α1 Ð |wT
1 û1|

1{2 γ1 Ð α1

u1 Ð ξ1u1{α1 w1 Ð ξ1w1{γ1

for k “ 1, 2, . . . do

vk`1 Ð G2uk ´ γkvk zk`1 Ð G1wk ´ αkzk

δk`1 Ð sgnpvTk`1zk`1q
`

|vTk`1zk`1|
˘1{2

βk`1 Ð
`

|vTk`1zk`1|
˘1{2

vk`1 Ð vk`1{δk`1, zk`1 Ð zk`1{βk`1

ûk`1 Ð GT
1vk`1{βk`1 ŵk`1 Ð GT

2zk`1{δk`1

uk`1 Ð A´1ûk`1 ´ ξkβk`1uk wk`1 Ð A´T ŵk`1 ´ ξkδk`1wk

ξk`1 Ð sgnpwT
k`1ûk`1q

αk`1 Ð |wT
k`1ûk`1|

1{2 γk`1 Ð αk`1

uk`1 Ð ξk`1uk`1{αk`1 wk`1 Ð ξk`1wk`1{γk`1

end for

Algorithm 4 SIMBO-NS: Simultaneous Bidiagonalization via Bi-Orthogonality, us-
ing the null spaces of G1 and G2, namely H1 and H2 such that G1H1 “ 0 and
G2H2 “ 0.

INPUT: A, H1, H2, b, c

v1 Ð b z1 Ð c

δ1 Ð sgnpvT1 z1q
`

|vT1 z1|
˘1{2

β1 Ð
`

|vT1 z1|
˘1{2

v1 Ð v1{δ1 z1 Ð z1{β1

u1 Ð H2v1 w1 Ð H1z1

û1 Ð Au1 ŵ1 Ð ATw1

ξ1 Ð sgnpwT
1 û1q

α1 Ð |wT
1 û1|

1{2 γ1 Ð α1

u1 Ð ξ1u1{α1 w1 Ð ξ1w1{γ1

for k “ 1, 2, . . . do

vk`1 Ð HT
1 ûk ´ γkvk zk`1 Ð H2A

Tŵ1 ´ αkzk

δk`1 Ð sgnpvTk`1zk`1q
`

|vTk`1zk`1|
˘1{2

βk`1 Ð
`

|vTk`1zk`1|
˘1{2

vk`1 Ð vk`1{δk`1 zk`1 Ð zk`1{βk`1

uk`1 Ð H2vk`1{βk`1 ´ ξkβk`1uk wk`1 Ð H1zk`1{δk`1 ´ ξkδk`1wk

ûk`1 Ð Auk`1 ŵk`1 Ð ATwk`1

ξk`1 Ð sgnpwT
k`1ûk`1q

αk`1 Ð |wT
k`1ûk`1|

1{2 γk`1 Ð αk`1

uk`1 Ð ξk`1uk`1{αk`1 wk`1 Ð ξk`1wk`1{γk`1

end for
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6.3. SPQMR-SC and SPQMR-NS. Similar to SPMR-SC, if we choose δ1v1 “ g,494

Algorithm 3 produces bases which satisfy495

ˆ

A GT
1

G2 0

˙ˆ

xk
yk

˙

´

ˆ

0
g

˙

“

ˆ

A GT
1

G2 0

˙ˆ

Uk 0
0 Vk

˙ˆ

x̄k
ȳk

˙

´

ˆ

0
g

˙

496

“

ˆ

AUkJk 0
0 Vk`1

˙ˆˆ

Jk LT
k

Ck 0

˙ˆ

x̄k
ȳk

˙

´

ˆ

0
δ1e1

˙˙

.497
498

We can again solve the QMR subproblem499

(25) min
x,y

›

›

›

›

Kk

ˆ

x̄
ȳ

˙

´

ˆ

0
δ1e1

˙
›

›

›

›

s.t. x “ Ukx̄, y “ Vkȳ.500

which is equivalent to the subproblem501

(26) min
x
}Ckx̄´ δ1e1} s.t. x “ Ukx̄.502

From this point the recurrence relations for constructing xk and yk are the same as503

in subsection 3.1, as the structure of suproblem (25) has not changed.504

As in (19), the residual here has a zero block, i.e., the same structure. But we
can only obtain an upper bound as done in [13], because Vk is not orthogonal. This
means that at the kth iteration,

}rk} ď
?
k ` 1 δ1 s1 . . . sk.

For SPQMR-NS we can derive analogous results, using the dual saddle-point system505

and a different right hand side; details are omitted.506

6.4. Comparison of SPMR to SPQMR and Relations to Other Meth-507

ods. An immediate difference between SPMR and SPQMR is that Zk and Vk are not508

orthogonal in SPQMR, and therefore the residual does not decrease monotonically509

with every iteration. Furthermore, the lack of orthogonality in the bases means that510

residual estimation requires an upper bound rather than an exact estimate.511

The other major difference is that SPMR has convergence that depends on the512

clustering of singular values of the Schur complement or the generalized reduced Hes-513

sian, compared to SPQMR whose convergence depends the eigenvalues when the Schur514

complement or the generalized reduced Hessian are diagonalizable. This difference af-515

fects preconditioning strategies, as there can be saddle-point matrices with Schur516

complements whose eigenvalues are clustered (e.g., triangular matrices with constant517

diagonal), but with unclustered singular values. The converse is also possible (e.g.,518

orthogonal matrices).519

Similar to how SPMR-SC is equivalent to USYMQR applied to the Schur comple-520

ment, SPQMR-SC can be viewed as being equivalent to QMR being applied to the Schur521

complement. As the relationship between orthogonal tridiagonalization and SIMBA522

is explored in subsection 2.5, a similar analysis can be made to show that SIMBO is523

unsymmetric Lanczos applied to the Schur complement. SPQMR-SC is equivalent to524

QMR applied to the Schur complement by an argument similar to subsection 3.5.525

We also comment on the case where K is symmetric, with particular attention526

to A being symmetric positive definite. If K is symmetric, then both SPMR-SC and527

SPQMR-SC become the same method. Furthermore, if A is SPD, then it becomes a528

form of Generalized LSQR [3]. If A is indefinite, then our method differs from other529

generalized LSQR methods, which handle only the positive definite case.530
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SPMR SPQMR

monotonic residual X ˆ

short recurrence X X
bidiagonalization procedure SIMBA SIMBO

depends on singular values of T eigenvalues of T
mathematically equivalent to USYMQR on T QMR on T

Table 1: Comparison of properties of SPMR vs. SPQMR. The matrix T denotes either
the Schur complement or the generalized reduced Hessian; see (22).

Similar observations can be made for SPQMR-NS, where the Schur complement is531

replaced by the generalized reduced Hessian. We note, however, that fewer analogies532

are available in the symmetric case, because solvers based on reduced Hessians have533

been explored less comprehensively than solvers associated with the Schur comple-534

ment.535

We summarize these observations in Table 1.536

7. Preconditioning. To develop a preconditioned version of SPMR, we will537

need to maintain the saddle-point structure of the matrix, and this presents a few538

challenges. If the preconditioner is symmetric positive definite, then weighted inner539

products are well defined and we will directly modify the bidiagonalization procedures540

SIMBA and SIMBO; otherwise we will modify the operator directly and apply our541

methods to the preconditioned matrix.542

In general, the approach will be to use right preconditioners of the form543

(27) P “
ˆ

I 0
0 M

˙

.544

This leads to the relationship (for the ‘SC’ sub-family of methods)

KP´1

ˆ

Uk 0
0 Vk

˙

“

ˆ

AUkJk 0
0 Zk`1

˙ˆ

Jk LT
k

Ck 0

˙

,

which is achieved in two different ways, depending on whether M is an SPD precondi-545

tioner or not. If M is SPD, we modify SIMBA and SIMBO to use M´1-orthogonality546

in Vk and Zk; if M is not SPD, then we can practically run unpreconditioned SIMBA547

or SIMBO on KP´1. For the ‘NS’ sub-family, this discussion also applies, but to the548

dual system.549

7.1. Preconditioned SIMBA. For symmetric problems with SPD precondi-550

tioners, symmetry can be retained by modifying the bidiagonalization procedure. To551

that end, assume that M is a positive definite matrix of size mˆm. We will describe552

the (right-)preconditioned SIMBA process, noting that preconditioned SIMBO is quite553

similar and for the sake of brevity will not be explicitly described.554

Preconditioned SIMBA compared to the unpreconditioned version trades orthog-555

onality of Vk and Zk for M´1-orthogonality. For SIMBA-SC, the following relations556
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are satisfied:557

(28)

GT
1M´1Vk “ AUkJkL

T
k , WT

kAUk “ Jk,

G1Wk “ Vk`1Bk, V T
k M´1Vk “ I,

GT
2 M´1Zk “ ATWkJkM

T
k , ZT

kM´1Zk “ I,

G2Uk “ Zk`1Ck.

558

Changes from the unpreconditioned relations, (Algorithm 1 and Equation (12)), are559

marked in red. The resulting procedure is summarized in Algorithm 5.

Algorithm 5 Preconditioned SIMBA-SC

INPUT: A, G1, G2, b, c, M
v̂1 “ b ẑ1 “ c
v1 “M´1v̂1 z1 “M´1ẑ1

β1 “
`

v̂T1 v1

˘1{2
δ1 “

`

ẑT1 z1

˘1{2

v1 “ v1{β1 z1 “ z1{δ1
û1 “ GT

1M´1v1 ŵ1 “ GT
2M´1z1

u1 “ A´1û1 w1 “ A´T ŵ1

ξ1 “ sgnpwT
1 û1q

α1 “ |w
T
1 û1|

1{2 γ1 “ α1

u1 “ ξ1u1{α1 w1 “ ξ1w1{γ1

for k “ 1, 2, . . . do

vk`1 “ G1wk ´ αkvk zk`1 “ G2uk ´ γkzk
v̂k`1 “M´1vk`1 ẑk`1 “M´1zk`1

βk`1 “
`

vTk`1v̂k`1

˘1{2
δk`1 “

`

zTk`1ẑk`1

˘1{2

vk`1 “ vk`1{βk`1 zk`1 “ zk`1{δk`1

ûk`1 “ GT
1v̂k`1{βk`1 ŵk`1 “ GT

2ẑk`1{δk`1

uk`1 “ A´1ûk`1 ´ ξkβk`1uk wk`1 “ A´T ŵk`1 ´ ξkδk`1wk

ξk`1 “ sgnpwT
k`1ûk`1q

αk`1 “ |w
T
k`1ûk`1|

1{2 γk`1 “ αk`1

uk`1 “ ξk`1uk`1{αk`1 wk`1 “ ξk`1wk`1{γk`1

end for

560

The exact same procedure is applied to SIMBA-NS, and as before, this is done for561

the dual system, (8); see Algorithm 6.562

All recurrences applied to the resulting bidiagonal matrices carry through as de-563

scribed in section 3. As this is equivalent to right-preconditioning, at the end y needs564

to be recovered via an additional M-solve, that is, y ÐM´1y.565

7.2. Preconditioned SPMR-SC and SPQMR-SC. If the preconditioner is
not symmetric positive definite, then it is impractical to precondition the bidiagonal-
ization procedures SIMBA and SIMBO directly; instead we modify the saddle-point
system directly. Theorem 6 and Krylov subspace theory may be used to show that
if the Schur complement has clustered singular values then SPMR-SC will converge
quickly, and if it has clustered eigenvalues then SPQMR-SC will converge quickly.
Furthermore, preconditioners must be block diagonal in order to maintain the saddle-
point structure of the operator. Therefore, if S̃ « S is an approximation to the Schur
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Algorithm 6 Preconditioned SIMBA-NS

INPUT: A, H1, H2, b, c, M
v̂1 “ b ẑ1 “ c
v1 “M´1v̂1 z1 “M´1ẑ1

β1 “
`

v̂T1 v1

˘1{2
δ1 “

`

ẑT1 z1

˘1{2

v1 “ v1{β1 z1 “ z1{δ1
u1 “ H2M´1v1 w1 “ H1M´1z1

û1 “ Au1 ŵ1 “ ATw1

ξ1 “ sgnpwT
1 û1q

α1 “ |w
T
1 û1|

1{2 γ1 “ α1

u1 “ ξ1u1{α1 w1 “ ξ1w1{γ1

for k “ 1, 2, . . . do

vk`1 “ HT
2 ŵk ´ αkvk zk`1 “ HT

1 ûk ´ γkzk
v̂k`1 “M´1vk`1 ẑk`1 “M´1zk`1

βk`1 “
`

vTk`1v̂k`1

˘1{2
δk`1 “

`

zTk`1ẑk`1

˘1{2

vk`1 “ vk`1{βk`1 zk`1 “ zk`1{δk`1

uk`1 “ H2v̂k`1{βk`1 ´ ξkβk`1uk wk`1 “ H1ẑk`1{δk`1 ´ ξkδk`1wk

ûk`1 “ Auk`1 ŵk`1 “ ATwk`1

ξk`1 “ sgnpwT
k`1ûk`1q

αk`1 “ |w
T
k`1ûk`1|

1{2 γk`1 “ αk`1

uk`1 “ ξk`1uk`1{αk`1 wk`1 “ ξk`1wk`1{γk`1

end for

complement, then we seek left- or right-preconditioners of the form

P “
ˆ

I 0

0 S̃

˙

.

For right-preconditioning, this will be equivalent to using the right-preconditioned566

operator567

(29) KP´1 “

ˆ

A GT
1 S̃

´1

G2 0

˙

.568

Computing solutions to linear systems of the form S̃d “ c can be performed in an
alternative fashion as well using a constraint preconditioner. Using an approximation
to the leading block Ã « A, we can instead compute the solution to the linear system

ˆ

Ã GT
1

G2 0

˙ˆ

˚

d

˙

“

ˆ

0
´c

˙

,

keeping only the second component d. We note that the key requirement here is569

preserving the block structure, therefore it is possible to also approximate the off-570

diagonal blocks G1 and G2. That is, it is not necessarily the case that a constraint571

preconditioner must be used.572

7.3. Preconditioning SPMR-NS and SPQMR-NS. Since the ‘NS’ methods573

are effectively SPMR-SC and SPQMR-SC methods applied to the dual saddle-point574

system (8), the strategy for preconditioning is analogous to the previous section in that575
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we want to approximate R “ HT
1 AH2, but instead of working with the preconditioned576

(primal) saddle-point system, we will work with the preconditioned dual saddle-point577

system,578

(30) KDP´1 “

ˆ

A AH2R̃
´1

HT
1 A 0

˙

.579

If null-space bases H1 and H2 are given, then it is feasible to construct such an580

approximation, but such an approach would be difficult if H1 and H2 are implicit581

operators or if they are not easily available.582

We start our quest for designing a preconditioner for the NS sub-family by as-583

suming that H1 and H2 are available and have full rank. This requirement will be584

eliminated later on. Consider the ideal preconditioner R̃ “ HT
1 AH2, so that the585

preconditioned dual saddle-point matrix (30) can now be written as follows:586

(31)

ˆ

A AH2pH
T
1 AH2q

´1

HT
1 A 0

˙

.587

We say that this choice of R̃ gives an ideal preconditioner because the Schur comple-588

ment of the above matrix is the identity. Since we are interested in a strongly clustered589

spectrum for the Schur complement, this observation is useful as a starting point for590

designing a preconditioner. Of course, the (1,2)-block cannot be easily computed and591

we need to find ways to alleviate this difficulty. First, if Ã « A is an approximation592

for the leading block, we can make the representation more practical. Next, we can593

instead consider computing matrix vector products of the form594

(32) d “ H2pH
T
1 ÃH2q

´1HT
1 c.595

If we compare (32) to the (1,2)-block of (31), we observe that main difference is in a596

pre-multiplication by HT
1 and the post-multiplication of A which is trivial to apply.597

Systems such as in (32) can be relatively easily computed by solving the constraint598

preconditioner system599

(33)

ˆ

Ã GT
1

G2 0

˙ˆ

d
˚

˙

“

ˆ

c
0

˙

.600

To see this, notice that the matrix in (32) is precisely equal to the leading block of601

the inverse of the matrix in (33) [5, 9]. Thus it is no longer necessary to have H1 and602

H2 available explicitly; we can accomplish computation of d by solving a constraint603

preconditioner.604

8. Applications and Numerical Experiments. In this section we numeri-605

cally illustrate the features of SPMR and its variants.606

8.1. Nearly-Orthogonal Schur Complement. We begin with an example of607

the performance of members of the ‘SC’ family, highlighting the distinction between608

having well clustered singular values and well clustered eigenvalues for the Schur609

complement. We generate the system610

(34) K
ˆ

x
y

˙

“

ˆ

A GT
1

QG2 0

˙ˆ

x
y

˙

“

ˆ

0
g

˙

,611

where n “ 700, m “ 400, g is random, A is a nonsymmetric diagonally dominant612

sparse random matrix, G1, G2 are sparse random matrices, and Q is a random or-613

thogonal matrix. The sparse matrices were generated via Matlab’s sprand, with a614
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density of 0.1, and Q was generated via the QR factorization of a random matrix. A615

is made diagonally dominant by adding a multiple of the identity.616

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5
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0

0.5
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1.5

(a) Eigenvalues in the complex plane of
the preconditioned Schur complement of
problem (34). For convenient visualiza-
tion purposes, a small number of the
larger eigenvalues are excluded from the
figure.
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(b) Singular values of the preconditioned
Schur complement of problem (34).

Fig. 2: Spectrum of preconditioned Schur complement of problem (34) in Subsec-
tion 8.1.

Since A is diagonally dominant, a reasonable approximation to the Schur com-
plement is

S̃ “ G2D
´1GT

1

where D is the diagonal of A. We can thus write QG2A
´1GT

1 S̃
´1 « Q, which means617

that the Schur complement would have a well distributed spectrum of singular values,618

while the eigenvalues would be spread around the unit circle in the complex plane.619

Recall that SPMR-SC rapidly converges when the singular values of the Schur comple-620

ment are strongly clustered. Solvers whose convergence rate depends on eigenvalues621

may not perform as well in this case.622

We plot the eigenvalues in the complex plane in Figure 2a, and the singular values623

on a semilog plot in Figure 2b, which confirm our claim for this example.624

Consider the right preconditioners625

(35) P1 “

ˆ

I 0

0 S̃

˙

and P2 “

ˆ

A 0

0 S̃

˙

.626

We compare the performance of SPMR-SC and SPQMR-SC, where we use the pre-627

conditioner P1, and GMRES where we use the preconditioner P2. The results are628

presented in Figure 3, where we track the residual norm per iteration.629

As expected, SPMR-SC converges quickly due to well clustered singular values.
On the other hand SPQMR-SC and GMRES are not competitive since the eigenvalues
of the Schur complement are spread around the complex unit circle. GMRES takes
exactly 2m` 1 iterations, since it’s applied to the operator

KP´1
2 “

ˆ

I GT
1 S̃

QG2A
´1 0

˙

,
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Fig. 3: }rk} for problem (34) of Subsection 8.1.

whose eigenvalues are 1 (with algebraic multiplicity n´m) and the other 2m eigenval-630

ues are ˘λ where λ is an eigenvalue of the Schur complement of the above operator,631

QG2A
´1GT

1 S̃, which are not clustered.632

8.2. Highly Non-Normal Generalized Reduced Hessian. We show an ex-633

ample where SPMR-NS outperforms typical Krylov methods in terms of convergence634

behavior of the residual norm. In this case we take a saddle-point matrix such that635

the leading block A is an nˆ n Grcar matrix [30, Ch. 7], and the off-diagonal blocks636

G1 “ G2 “
`

F1 F2

˘

, with F1, F2 P Rn
2ˆ

n
2 , and }F1}2 " }F2}. We choose n “ 1000,637

and take the right-hand side to be of the form pfT , 0T qT with f random.638

We run unpreconditioned SPMR-SC and SPQMR-SC, where we use the null-space
matrices

H1 “ H2 “

ˆ

F´1
1 F2

´I

˙

.

For the purpose of comparison, we run GMRES and LSQR preconditioned with

P “
ˆ

I GT
1

G2 0

˙

.

We use the constraint preconditioner due to its relationship to projections onto the639

null-space of the off-diagonal blocks. Thus, we can now talk about comparable iterates640

in terms of projections onto the null-space. The norm of the residual is plotted in641

Figure 4.642

It is known that nonsymmetric Krylov subspace methods may suffer on highly643

non-normal matrices such as the Grcar matrix [30]. Since }F1} " }F2}, most of the644

mass of the null-space basis is in the identity block. This means that the generalized645

reduced Hessian exhibits spectral behaviour similar to A. We can see in Figure 4646

that LSQR has trouble converging, and GMRES and SPQMR-NS which depend eigen-647

values do not converge too quickly. On the other hand, we see that SPMR-NS has648
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Fig. 4: }rk} for the problem of Subsection 8.2.

fast convergence, since it depends on the singular values of the generalized reduced649

Hessian.650

8.3. Effect of Conditioning on SPMR-SC. We next demonstrate the strong651

performance of SPMR-SC in comparison with solvers that work directly on the Schur652

complement. As we have shown in subsection 3.5, SPMR-SC works on the entire653

saddle-point system but is mathematically equivalent to USYMQR applied to the654

Schur complement system Sy “ ´g.655

Consider the saddle-point system656

K
ˆ

x
y

˙

“

ˆ

A GT
1

G2 0

˙ˆ

x
y

˙

“

ˆ

0
g

˙

,(36)657
658

where in this case, n “ 600, m “ 300, g is random, and A is a block tridiagonal
matrix of the form

A “

¨

˚

˚

˚

˚

˚

˝

B ´I
´I B ´I

. . .
. . .

. . .

´I B ´I
´I B

˛

‹

‹

‹

‹

‹

‚

,

with

B “

¨

˚

˚

˚

˚

˚

˝

4 ´1` δ
´1´ δ 4 ´1` δ

. . .
. . .

. . .

´1´ δ 4 ´1` δ
´1´ δ 4

˛

‹

‹

‹

‹

‹

‚

,

where δ “ 0.1. The matrix A is a finite difference discretization of a simple 2D659

convection-diffusion equation with constant coefficients on the unit square. G1 is a660
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(b) }y˚ ´ yk} for problem (36).

Fig. 5: Performance of SPMR versus USYMQR on problem (36).

random matrix whose condition number has been set to be κpG1q “ 105, while G2 is661

a random perturbation of G1 so that it has a similar condition number. This results662

in κpSq « 108. The exact solution x˚ and y˚ is obtained via Matlab’s backslash663

operator.664

In Figure 5a and Figure 5b we see the residual and error norms at every iteration665

respectively. It is clear that even though in exact arithmetic the two would produce666

the same iterates, we we obtain 4 digits of accuracy more using SPMR-SC on the entire667

saddle-point system as compared to USYMQR on the Schur complement. This result668

is similar in spirit to the improved stability in LSQR over running CG on the normal669

equations [24].670

We note that this property may not always manifest itself as it would in the671

symmetric case where A is positive definite. Since these are nonsymmetric problems,672

there could exist cases where it may be beneficial to form the Schur complement over673

working with the full saddle-point system. That being said, in cases when the Schur674

complement has a large condition number which is nearly the product of the condition675

numbers of G1 and G2, we would expect SPMR-SC to outperform methods that work676

directly on the Schur complement.677

8.4. Interior-Point Methods. Constrained optimization problems provide a678

rich source of saddle-point systems in various forms. Consider quadratic programs679

and their corresponding duals, of the form680

min
x

cTx` 1
2x

THx subject to Jx “ b, x ě 0,(37)681

max
x,y,z

bT y ´ 1
2x

THx subject to JT y ` z ´Hx “ c, z ě 0.(38)682
683

One of the most popular classes of techniques for solving this problem are interior-684

point methods. They are based on relaxing the complementarity conditions by intro-685

ducing a small parameter-dependent perturbation. The Newton step is ‘corrected’ by686

steering the iterate towards the so called ‘central path’ [23]. The extent by which this687

is done depends on the proximity to the solution and other considerations.688
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The perturbed optimality conditions are689

(39)

¨

˝

c`Hx´ JT y ´ z
Jx´ b

τe´XZe

˛

‚“ 0, px, zq ą 0.690

The parameter τ is initially set as a small positive number and is gradually decreased691

towards zero as we approach the optimal solution. There are various strategies for692

selecting the value of τ . Solving the mildly nonlinear system (39) using Newton’s693

method results in the linear system694

(40)

¨

˝

H ´I JT

´Z ´X 0
J 0 0

˛

‚

¨

˝

∆x
∆z

´∆y

˛

‚“

¨

˝

´c´Hx` JT y ` z
b´ Jx

XZe´ τe

˛

‚.695

The linear system (40) is nonsymmetric. The matrices X and Z are diagonal,696

but they grow increasingly ill-conditioned as the solution of the optimization problem697

is approached, due to driving τ to zero. It is possible to symmetrize (40), but doing698

so requires inverting Z, and this may affect the numerical stability of the solution699

procedure, although the effect is subject for debate. Issues related to conditioning of700

the matrices involved in the interior-point linear system have been subject to extensive701

exploration; see, for example, [34].702

We may opt to solve the linear system by forming the Schur complement, and703

there is more than one alternative here. In [20] a comprehensive study was conducted704

on the condition number (40) and reduced versions based on block Gaussian elimina-705

tion. It was shown that from a conditioning point of view, the unreduced 3-by-3 form706

is more robust near the optimal solution, compared to reduced versions.707

Forming the Schur complement may yield a highly ill-conditioned matrix, and708

the inversion of the leading block in this case may be computationally prohibitive,709

especially if the Hessian H is hard to deal with computationally (note that it may710

often be indefinite). We thus resort to using null spaces. Since null-space methods711

are a popular approach to solving problems with linear constraints, it is reasonable to712

have a linear mapping to the null-space of J , which we will call C. In this case, we will713

use the orthogonal projector C “ I ´ JT pJJT q´1J . We also modify the right-hand714

side by finding a particular solution ∆x0 such that J∆x0 “ XZe ´ τe, so that we715

instead solve the system716

¨

˝

H ´I JT

´Z ´X 0
J 0 0

˛

‚

¨

˝

∆x´∆x0

∆z
´∆y

˛

‚“

¨

˝

´c´Hx` JT y ` z ´ J∆x0

b´ Jx
0

˛

‚.717

718

Thus we can apply SPMR-NS and SPQMR-NS with

H1 “ H2 “

ˆ

C
I

˙

.

We compare SPMR-NS and SPQMR-NS against GMRES (both full and restarted
with a restart of 20), LSQR and BiCGSTAB. We take the polygon100 problem from
COPS [6] (in its nonnegative slack formulation), where n “ 16347 and m “ 10700,
and construct a quadratic approximation to the nonlinear program at the initial point
plus a small offset to move it off of the boundary. We can control how ill-conditioned
the problem is by moving x and z close to the boundary of the bound constraints.
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(a) x “ x0 ` 10´11, z “ 10´11.
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(b) x “ x0 ` 10´11, z “ 10´21.
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(c) x “ x0 ` 5 ¨ 10´31, z “ 10´21.

Fig. 6: }rk}2 using various values for x and z. x0 is provided as part of the polygon100
problem. 1 denotes a vector of all ones.

We first run the iterative methods for various values of x and z which progressively
make the problem more ill-conditioned. We also precondition GMRES, BiCGSTAB

and LSQR with the constraint preconditioner

P “

¨

˝

I 0 JT

0 I 0
J 0 0

˛

‚.

We plot the residual norm per iteration in Figure 6 with various values of x and z.719

In Figure 6a, all of the methods other than LSQR are comparable in performance, as720

they tend to decrease the residual geometrically. SPMR-NS, SPQMR-NS, BiCGSTAB721

and GMRES appear to have roughly the same rate (although BiCGSTAB is highly722

irregular), while restarted GMRES decreases more slowly. Since SPMR-NS, SPQMR-NS723

and BiCGSTAB are the fastest converging short-recurrence methods, they appear724

appropriate for this problem.725

As we make the problem more ill-conditioned in Figure 6b, we see that SPMR-NS726

no longer converges, and although GMRES converges the most quickly, it begins to727

become more expensive per iteration to do the reorthogonalization. We see SPQMR-NS728

converges most quickly among the short-recurrence methods, while BiCGSTAB and729
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restarted GMRES lag a little bit behind.730

In the most ill-conditioned case, we see that SPQMR-NS converges first by far,731

while GMRES takes significantly longer. Restarted GMRES, BiCGSTAB and LSQR732

stall out around }rk} « 10´4, while SPMR-NS has trouble converging at all. Thus we733

see that SPQMR-NS is the most practical method in this case.734

0 10 20 30 40 50

Iteration

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

x=x
0

 + 1e-1, z=1e-1
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0

 + 5*1e-3, z=1e-2

Fig. 7: }rk} for SPQMR-NS on the polygon100 problems from Figure 6 with precon-
ditioning.

We now precondition SPQMR-NS by approximating the generalized reduced Hes-
sian, to see how the convergence behaviour changes. The generalized reduced Hessian
in this case is

R “

ˆ

CTHC ´CT

´ZC ´X

˙

.

Note that with the non-negative slack formulation, H will have large zero blocks
corresponding to the slack variables; therefore it is reasonable to approximate H by
the identity, so that the first block is replaced by CTC “ C2 “ C since C is a
symmetric orthogonal projector. Therefore, we can approximate the reduced Hessian
by the block triangular matrix

R « pR “

ˆ

C ` αI 0
´ZC ´X

˙

,

where α is a small value to make pR nonsingular (we take α “ 10´3). Since X is
diagonal and C is an orthogonal projector, solving against this preconditioner can be
done efficiently. Thus we now use the null-space operators

H1 “

ˆ

C
I

˙

, and H2 “ H1
pR´1.

The residual norm convergence history for the 3 problems is given in Figure 7. Even735

with a relatively simple approximation to R, we see that we can now take a fairly736

reasonable number of iterations to converge, which makes SPQMR-NS a potentially737

practical method for solving saddle-point systems arising from such optimization prob-738

lems.739
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Problem n m SPMR-NS

N1 88 25 8
N2 368 113 8
N3 1504 481 8
N4 6080 1985 8
N5 24448 8065 8
L1 353 98 6
L2 634 179 6
L3 2004 604 6
L4 7544 2383 6

Table 2: Number of iterations for SPMR-NS for several problems to achieve relative
residual norm of 10´10. The Ni problems correspond to a unit square domain whereas
the Li problems correspond to L-shaped domains.

8.5. Maxwell. A simple form of time-harmonic Maxwell equations can be writ-740

ten as follows:741

´∇ˆ∇ˆ u`∇p “ f,742

∇ ¨ u “ 0,743

with appropriate boundary conditions. We point the reader to [21] for additional744

details. A significant challenge in solving this problem is that the discrete curl-curl745

operator is rank deficient, and hence the corresponding leading block of the saddle-746

point matrix is singular (see, for example, [8, 9] for ways to deal with a highly rank747

deficient leading block). For this reason SPMR-SC is not a viable candidate. On the748

other hand, for SPMR-NS we can exploit the fact that the null-space of the off-diagonal749

blocks of the matrix is explicitly known and can be expressed in a sparse fashion. We750

therefore examine SPMR-NS.751

The computational kernels involved in using SPMR-NS and SPQMR-NS are to752

solve constraint preconditioners of the form753

ˆ

I GT

G 0

˙ˆ

d
˚

˙

“

ˆ

c
0

˙

and

ˆ

A`M GT

G 0

˙ˆ

d
˚

˙

“

ˆ

c
0

˙

,(41)754
755

where M is the vector mass-matrix.756

We solve against a random right-hand side of the form pfT , 0qT , and record the757

number of iterations required to achieve a relative residual norm of 10´10. The results758

are recorded in table 2.759

Since this is a symmetric problem using a symmetric positive definite precondi-760

tioner, SPMR-NS and SPQMR-NS are the same method. We see that SPMR-NS shows761

perfect scalability with the given preconditioner.762

We note that scalable solution methods based on block diagonal preconditioned763

MINRES do exist and perform very well [8, 21]. Here we show that SPMR is competi-764

tive with those approaches and is fully scalable too, although the preconditioner solves765

are slightly more computationally costly. Further connections to existing solvers such766

as PP-MINRES [17] may be apparent.767

9. Concluding Remarks. The promise of the SPMR family is in it being a768

customized solver for saddle-point systems, with a monotonic and short recurrence769
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version for the nonsymmetric case. It is significant that for the SC version, as op-770

posed to other solvers, we effectively avoid squaring the condition number the Schur771

complement while implicitly forming it. It is also notable that convergence is very772

rapid when the singular values of the Schur complement are clustered.773

SPMR on its various versions offers a novel simultaneous bidiagonalization pro-774

cedure, and proves competitive with other solvers in a variety of scenarios, as we have775

demonstrated in our numerical experiments.776

We would also like to offer some comments on inexact matrix-vector products.777

Considerable work has been done in the field of inexact Krylov methods, such as in778

[14, 18, 29, 31]. It would be beneficial to be able to use inexact A-solves (for SPMR-SC779

or SPQMR-SC) or inexact null-space projections (for SPMR-NS or SPQMR-NS) by us-780

ing this theory. Although previous work is concerned primarily with methods based781

on the Arnoldi or Lanczos process [18, 29, 31], or the Golub-Kahan process [14], it782

should be possible to extend this work to SIMBA and SIMBO. The main disadvan-783

tage is that either short-recurrence methods become long-recurrence methods when784

inexact matrix-vector products are introduced as in [14], or the tolerance for how785

inexact the products must be made tighter [31]. Even if the methods are forced to786

be long-recurrence, if the iteration cost is dominated by the A-solves or null-space787

projects rather than reorthogonalization, investigating the use of inexactness would788

be advantageous, and the topic of future research.789

Finally, it may be desirable to explore applying SPMR to the important class of790

regularized saddle-point systems.791

A Matlab version of our code is available at https://github.com/restrin/792

LinearSystemSolvers.793
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