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SPMR: A FAMILY OF SADDLE-POINT MINIMUM RESIDUAL
SOLVERS

RON ESTRIN* AND CHEN GREIFT

Abstract. We introduce SPMR, a new family of methods for iteratively solving saddle-point
systems using a minimum or quasi-minimum residual approach. No symmetry assumptions are made.
The basic mechanism underlying the method is a novel simultaneous bidiagonalization procedure that
yields a simplified saddle-point matrix on a projected Krylov-like subspace, and allows for a mono-
tonic short-recurrence iterative scheme. We develop a few variants, demonstrate the advantages of
our approach, derive optimality conditions, and discuss connections to existing methods. Numerical
experiments illustrate the merits of this new family of methods.

Key words. saddle-point systems, iterative solvers, Krylov subspaces, bidiagonalization, mini-
mum residual, preconditioning

AMS subject classifications. 15A06, 15A18, 65F08, 65F10, 65F25, 65F50

1. Introduction. Consider the problem of iteratively solving large and sparse
saddle-point systems of the form

2 (& ©)6)-6)

where A € R"*" G1,Gs € R™*™ f e R", and g € R™. We assume, as is typically the
case in most applications, that m < n. Throughout our discussion we will denote the

matrix of (1) by K:
_(A &1
K = (02 ‘ > |

Saddle-point systems arise in a large variety of applications, and numerical solu-
tion methods have been extensively explored [5, 7, 33]. But there are relatively few
solvers that have been tailored specifically to the block structure of these systems.
Rather, general iterative solvers are typically used, and exploiting the block structure
is often reserved to the preconditioning stage. Our goal is to develop solvers for (1)
that take into account the block structure of the matrix K. We are interested in the
most generic setting here, i.e., we allow A to be any matrix (from symmetric positive
definite to symmetric indefinite to nonsymmetric), and allow G1 # Ga.

We introduce a family of short recurrence solvers that are based on residual
norm minimization or quasi-minimization, and call this family SPMR: Saddle-Point
Minimum Residual.

One of the innovations that we offer in the derivation of SPMR is the bidiagonal-
ization of the two off-diagonal block matrices, G; and Ga, using a procedure similar
in spirit to the generalized Golub-Kahan bidiagonalization [2, 3, 15], along with a
simultaneous diagonalization of A.

Solving saddle-point systems is a challenging task, and numerical methods typi-
cally involve potentially costly interim computations, such as inversion or the compu-
tation of a null space. The SPMR family can be split into two main sub-families: (i)
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methods that require the inversion of A, and (ii) methods that use null spaces of Gy
and Gs. The first set of methods, (i), is restricted to situations where A is invertible
and the inversion operation is computationally inexpensive. These methods implicitly
solve linear systems associated with the Schur complement,

(2) S =GAT'GT.

The second set of methods, sub-family (ii), may be appealing when the null spaces of
G and G are relatively easy to detect or when we have basis-free procedures that
can efficiently utilize these null spaces. These methods implicitly solve linear systems
associated with

3) R = H{ AH,,

where Hy and Hs are such that Gy H; = GoHs = 0. We call R the generalized reduced
Hessian, because it generalizes the notion of the reduced Hessian in optimization,
when A is symmetric, G; = G5 and (1) arises from a quadratic programming problem
[23].

SPMR projects the given saddle-point matrix onto a smaller subspace where the
(projected) matrix has a simple saddle-point block structure. In this regard, it is
similar to the augmented system interpretation of LSQR [24] and LSMR [11]. We
provide a characterization of the search space, show connections to other methods
such as USYMQR [27], and apply an optimality criterion similar to the approach
taken in the development of QMR [13]. In the specific case that A is symmetric
positive definite and G; = G, our solvers reduce to the generalized LSQR developed
by Arioli & Orban, the Projected Conjugate Gradient method developed by Hribar,
Gould and Nocedal, and related solvers [3, 16, 17].

Fig. 1: Various versions of SPMR.

Fig. 1 is a schematic of the SPMR, family: ‘SC’ stands for Schur complement,
and ‘NS’ stands for null-space. SPMR and SPQMR differ from each other by the
choice of residual minimization or quasi-minimization, respectively, when solving the
relevant subproblem. As common for iterative solvers, this difference can also be
characterized by orthogonalization vs. bi-orthogonalization; consider for example
USYMQR vs. QMR.
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In Section 2 we describe the basic principles of SPMR, including details on the
bidiagonalization procedure that forms the core of our approach. Sections 3 and 4
provide the derivations of the two sub-families of SPMR: SPMR-SC, which requires the
inversion of A, and SPMR-NS, which requires computation of the null spaces of G and
(5. In Section 5 we discuss properties of the SPMR solvers. In Section 6 we develop
a variant that we call SPQMR, which relies on residual quasi-minimization. Here
again, we offer two variants, SPQMR-SC and SPQMR-NS. In Section 7 we address the
important issue of preconditioning and introduce preconditioned versions of SPMR and
its variants. In Section 8 we show a few examples that illustrate the various features
of our new family of methods. Finally, in Section 9 we draw some conclusions.

We use standard Householder’s notation throughout (capital letters for matrices,
lower-case letters for vectors, and Greek letters for scalars), and unless otherwise
stated, the notation || - | signifies the ¢5 vector norm.

2. SPMR. We now derive SPMR and its variants. As we shall see, the core of
our algorithms is a Lanczos-like procedure called SIMBA.

2.1. Right Hand Side Setting. It is convenient to set the right-hand side
in correlation with the family members that we choose to use. If A is efficiently
invertible, general right-hand sides (f7,¢7)7 can be handled by solving A% = f, and

then solving
A G (o = 0 r=x+2
Gy, O y)] \g—Ga)’ - :

We could therefore assume in this case, without loss of generality, that we need
to solve systems of the form

® (& ©)G)-6)

and proceed to develop methods in the ‘SC’ sub-family. Like the generalized LSQR
method [3], we are constrained to solve systems with a zero block, which means that
it is necessary to form g — G2 on the right-hand side.

On the other hand, if we are solving with general right-hand side (f7,¢7)7 and
we wish to avoid inverting A, if we are able to find a particular solution Go& = g,
then we can instead solve

(& DE-07) v

We can then focus on saddle-point systems of the form

© (@ )G -@)

In this case it is possible to have A singular, and our focus will be on developing
‘NS’-type methods, which require using the null spaces of G; and Gs.

2.2. The Dual Saddle-Point System. Let H; and Hy be null-space bases so
that G1H, = GoHy = 0. From (5) we can see that since Gox = 0, then x = Haq for
some ¢. Furthermore, if we consider the first equation Az + GTy = f, we can see that
by applying H{ from the left, we get
HI f = HF Az + HI GTy

= H{ AH»q = Ry,
3

(6)
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where R is the generalized reduced Hessian defined in (3).

If A were invertible, then we could recognize (6) as the range-space method (re-
ferred to also as the Schur complement method) applied to the dual saddle-point
system, described in [5]:

™) (i B0 = (L)

Notice also that in that case, if A were invertible, (6) would be equivalent to the
system
HI f = (H{ A)A™'(AH,)q.

But the above is nothing but the system corresponding to the range-space method
applied to the saddle-point system

(8) (HéA Aé%) (‘Z) - (—Igff) |

We call (8) the inverse-free dual saddle-point system, and we will denote the matrix

by
K — A AH,
b= (HlTA 0 ) '

Moving forward, we will use the shorthand expression “dual system” in reference to
(8) rather than (7), since the need to use an inverse-free version is central. A key
point here is that once we have defined this dual system, there is no longer a need to
assume that A is invertible, even though we assumed that in order to obtain (8).

At first glance, it would appear that the system in (8) has some issues pertaining
to singularity: if either A or the H; are singular, then the system itself is singular.
Let us alleviate those concerns with the following theorem.

THEOREM 1. Suppose that K is nonsingular, without further assumptions on A.
Let © and y be the unique solution to (5). Then there exists a solution to (8) such
that p € ker(Gs). For this p, we can recover x and y, as follows: set x = —p and
obtain y from the consistent overdetermined system

Gly=f+Ap=f— Ax.

Proof. We first show that there exists p € ker(Gz) which solves (8). Note that
there exist unique x, y which solve (5) since K is nonsingular, and that @ = Haq €
ker(G3) for the ¢ chosen in (6); we therefore choose p = —z and show that this choice
satisfies (8). We have

A AH, P\ _ —AHyq+ AHyq . 0 . 0
HIA 0 q] —H{ AHyq ~ \-Rq) \-HIf)’
so this choice of p € ker(G2) and ¢ indeed solves (8).
We now show that if p € ker(Gs) and p, g solve (8), then z = —p solves (5) and

GTy = f — Az is consistent. We have Gax = 0 since x = —p € ker(Gs), and from (8)
we have

0= H{(f + Ap) = H{ (f — Ax),

so that f — Az € ker(H{) = range(G7); therefore GTy = f — Az is consistent. d
4
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2.3. SIMBA: Simultaneous Bidiagonalization via A-Conjugacy. A cor-
nerstone of our method is a technique of simultaneous bidiagonalization. We construct
a projected subspace that includes a diagonal reduction of the leading block and bidi-
agonalized versions of the off diagonal blocks. We call it SIMBA: Simultaneous
Bidiagonalization via A-conjugacy.

SIMBA

has two variants: one that relies on inverting A (when applicable), and one that
relies on null spaces of G; and G,. In the latter case A may be singular, and we will
turn to using the dual system, (8).

Define
aq
B2 an .
) m=| = ()
k+1€
Br o
Br+1
and
Al
d2 72 v
10 Cp = = o)
(10) . | (52%)
ok Tk
Ok41
We will construct bases
(11) Uk = [ul...uk]7 Vk= [U1~-~Ulc];
Wk:[wl...wk], Zk:[zl...zk],

where the construction depends on whether we use A inversions, or whether we rely
on null spaces of G; and Gs.

2.3.1. SIMBA-SC: Using A Inversion. Suppose that A is invertible, and that
inverting A is computationally inexpensive and may be done throughout the iteration.
We construct the matrices specified in (9)-(11) such that the following relations are
satisfied:

G?Vk = AUkaLg, WEAUk = Jka
12 G1Wy = Vi1 By, ViV = 1,
GY 7, = ATW, I MT, Ztzy, =1,

GoUy, = Zj1Ch,

where Jj, is diagonal such that (Ji);,; = & = £1.

In the case where A is symmetric and G; = G2, we will have U, = W) and
Vi = Zy, allowing us to cut the computational and storage requirements in half. This
is because even if A is indefinite, by Silvester’s Law of Inertia, we use Jj to absorb
the indefiniteness of UL AU,,.

The above relations lead to Algorithm 1, which in exact arithmetic produces or-
thogonal Vj, Zj, and biconjugate Uy, W}. This is one variant of the SIMBA procedure,
which we call SIMBA-SC, because it relies an implicit construction of the Schur com-
plement, S. We describe the algorithm using separate columns for the computation
of ug, v and wy, 2z; to highlight the symmetry between the two pairs of vectors.

5
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Algorithm 1 SIMBA-SC: Simultaneous Bidiagonalization via A-conjugacy, using A
inversion and an implicit construction of the Schur complement.

INPUT: A, Gl, Gg, b, C
// Recall that |vg| = |zx| = 1 for all k

51111 —b 0121 < ¢
iy — GT. 0, — GE
1 101 w1 221
Uy < Ail’[Ll w1 < AiT’Ujl

€1 < sgn(w] 1)

Q< |w1Tﬂ1\1/2 Y1 Qq
up < &ui/an wy < §Lwy /M
for k=1,2,... do
Br+1Vk+1 < Grwg — agvy Okt12k41 < Goup — Yr2k

ﬁk+1 <« G?'Uk+1/ﬂk+1 UA)k-&-l <« ngk+1/5k+1
U1 — A7 g — EpBrs1tn W1 — A" — Epdrp1wy
ka1 — sgn(wiy 1 lgg1)
aps1 < Wiyt ]? Vht1 < Uyl
Upg1 <~ Epp1Uks1/ kg1 Wiy1 < Epp1Whi1/Yer1

end for

2.3.2. SIMBA-NS: Using Null Spaces of G; and G5. Suppose now that
computing null spaces of Gy and G5 is computationally viable, whereas inverting A
is not computationally attractive or is impossible due to singularity. We first notice
that mathematically, if A is invertible, when we apply SIMBA-SC in Algorithm 1 to
the dual system in (8), all inverses by A and AT will cancel with the off-diagonal
blocks AHy and AT H;. It is thus possible to derive an A inversion-free version of
SIMBA-SC. This version requires the availability of the null spaces of G; and Gs.

Suppose H; and H, are given, such that GiH; = 0 and GoHy = 0. We define
By, as in (9) and Cy as in (10), and then construct bases as in (11), but with (12)
replaced by

HyVy = UpJp LY, WEAU, = Jp,
13) H] AW, = Vi1 By, ViVi =1,
H,Z), = W M}, Zr7, =1,

HT AUy, = Z341C,

where again Jj is diagonal such that (Ji);; = & = £1.
Algorithm 2 thus gives us an alternative formulation of SIMBA. We call it
SIMBA-NS, to mark its reliance on null spaces.

2.4. Characterization of the Search Subspace. The following theorem states
that Algorithm 1 and Algorithm 2 produce the desired bidiagonalizations. The proof
of this theorem is by induction, similarly to the way the Lanczos method is derived,
and is omitted for the sake of brevity.

THEOREM 2. In exact arithmetic, the vectors generated by Algorithm 1 and Al-
gorithm 2 satisfy the relationships in (12) and (13), respectively.

The construction makes it clear that the simultaneous bidiagonalization is unique
up to the choice of starting vectors v; and 21, and the choice in the relative scaling

6
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Algorithm 2 SIMBA-NS: Simultaneous Bidiagonalization via A-conjugacy, using the
null spaces of G; and Gg, namely Hy and Hs such that Gy Hy = 0 and GoHy = 0.

INPUT: A, H,, Hy, b, ¢
// Recall that |vg| = |zx| = 1 for all k

51111 —b 0121 < ¢
uy < Havy wy < Hiz
’ELl <« Au1 12)1 <« ATﬂ)l

& — sgn(wi @)

oy — Jwlag V2 Y1
uy < &1ug/ag wy < {rwi /1
for k=1,2,... do

Br1Vkr1 < H3 r/ v — ooy Sks12ne1 < H{ t/a — yizn
Upt1 < Hovpy1/Bry1 — EpBryrun Wet1 — Hi2p11/0k41 — Epdpr1wi
Upg1 — Aty Wi — Awg g1
k1 — sgn(wi x11)
i1 < Wiyt ]? Vh41 < Qhg1
U1 < Epg1Uky1/Qps1 Wet1 < Epp1Whi1/Vhs1

end for

and sign of oy and ;. We choose to set ap = v, > 0.

Let us characterize the subspace which each of the bases specified in SIMBA-SC
and SIMBA-NS span. For notational convenience, let us denote by T either the Schur
complement in the case of SIMBA-SC or the generalized reduced Hessian in the case
of SIMBA-NS. That is,

(14) T— S, defined in (2), if SIMBA-SC is considered,
| R, defined in (3), if SIMBA-NS is considered.

THEOREM 3. Let T denote either S or R, as specified in (14). Let f1v1 = b and
0121 = ¢. Then the basis vectors generated in Algorithm 1 and Algorithm 2 satisfy

vor € span {b, TTTh, ..., (TTT)* 1o, TTc, TTTT c,... (TTT)*TT¢},
vops1 € span {b, T7Th, ... (TTT)*b, TTc, TTTT c,... (TTT)* T ¢},
zop € span{c, TT e, ..., (TTT)* 1e,Tb, TTTTH, ..., (TTT)*'Tb},
zops1 € span{ce, TT ¢,... (TT") e, To, TTTTH, ..., (TTT)*'Tb}.
For SIMBA-SC the basis vectors satisfy
uj € span {A_lGlTVk} ;W € span {A_TGQTZk} ,
and for SIMBA-NS the basis vectors satisfy
uy € span {HaV;};  wy € span{H Zx} .
Proof. The result follows by induction on k. ]

Notice that these spaces are not quite Krylov subspaces, but rather an interleaving
of two Krylov subspaces related to SS7 and STS in the case of SIMBA-SC, and an
interleaving of two Krylov subspaces related to RRT and RT R for SIMBA-NS. Each
iteration alternates between an application of S or S7 in one case and R or RT in
the other, rather than repeated applications of the same operator.

7
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2.5. Relationship to Orthogonal Tridiagonalization of the Schur Com-
plement. We demonstrate that in exact arithmetic SIMBA-SC applied to K is math-
ematically equivalent to applying orthogonal tridiagonalization to the Schur comple-
ment, S = GoA7'GT. It is worth stressing that in ill-conditioned cases, as we show
in the numerical experiments, SIMBA-SC may be more numerically stable than di-
rectly applying orthogonal tridiagonalization to the Schur complement. This result
is analogous to the way in which applying Golub-Kahan is more numerically stable
than applying Lanczos to the normal equations [11, 24].

Recall that orthogonal tridiagonalization generates two orthogonal bases VkQ, Z,?
such that

(Zl?+1)TSVkQ =T,
where Tj, € RETDXF is tridiagonal. It was further shown in [27] that Z9 and V¥

(and therefore T}) are unique up to the choice of v? and le

Suppose that v; = v? and z; = z? Using Vi and Zj generated by SIMBA-SC,
we have that

SVi, = Go ATIGTV,
= GL A AU I LY
= GoUpJy LT
= Zp1CrJi LY.

Since C, and LT are lower and upper bidiagonal respectively, and Jj is diagonal, then
CiJi LT is tridiagonal. Therefore by [27, Theorem 1], this is the unique tridiagonal-
ization of S, and thus 7 = Z,?, Vi = VkQ and T), = C’kaLg.

Note that the above also applies to SIMBA-NS, as it is equivalent to orthogonal
tridiagonalization of the generalized reduced Hessian. This equivalence between or-
thogonal tridiagonalization and SIMBA will allow us to explore relationships between
members of the SPMR family and existing iterative methods.

3. SPMR-SC: an A-inversion Version of SPMR. We are now ready to derive
members of the SPMR family, which rely on the SIMBA process. We will start with
the version that involves inversion of A. Suppose indeed that A is invertible. Armed
with Algorithm 1, we can observe the following relations. Define

_ (e L
. K- (2 )
and note that
(16) A GT U, 0 _ AUy, 0 Ji Lf
G2 0 0 Vk 0 Zk+1 Ck 0 ’

As mentioned at the outset of Section 2, if A is assumed (easily) invertible and we
pursue a method based on using A~', then it makes sense to consider a right-hand
side vector of the form (07, ¢7)T. Let the iterates be x;, = UpZy and yx = Vifk, SO

TN 0@ DE DO
() () ()

e
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It is then reasonable to adopt a quasi-minimum residual approach [13] and choose x,

and y; which satisfy
z 0 _ _
K (y) — (5161> H st x=Ugz, y=Viy.

3.1. Construction of Short Recurrences. We now make some observations
about the subproblem for generating Zy and g. In order to solve subproblem (17)
we use the QR decomposition of K (defined in (15)). Note that if we permute the

blocks of K}, to
LT J
0o Cp)’

the above matrix is almost upper-triangular, except that we need to form the QR
decomposition of Cj. Therefore, we can solve for xj first, and recover y;, afterwards,
so that an equivalent subproblem to (17) is

(17) min

z,Y

(18) min [CrZ — b1e1| st x=UZ.

Subproblem (18) is similar to the LSQR subproblem, which is solved by taking the
QR factorization of a bidiagonal system. Many of the following recurrence relations
for recovering xj, can be found in [24].

3.2. Recurrence for x;. We begin computing the QR decomposition of Cy
using the 2 x2 reflector

1 S gi! o1 _ (P11 01 ¢1
51 —c1) \02 72 p2 ¢2)’

and further reflectors defined by

Ck Sk Pk o6\ _ (PE Okl Ok
Sk —Ck) \Ok+1 Ykl Pk+1 Pr+1)

From this we obtain the QR decomposition

P11 02 D1
P2 03 ®2 "
[Mk+1 5161] = Qg : = Qs ( k UlfHek Pk ) .
’ Pr+1 Dkl
Pk Okl Pk
Pk+1  Pr+1

We define o), = (¢1,...,61)T and Qj as the first k columns of Qy, so that 7 =
R;leélel. Then, if we define Dy, = UkR,;l, we have

zp = Uz = (UkR;I)( 7{5161) = DkCPk =Tp_1 + Qrdy.
Computation of dj is accomplished via forward substitution, since
pP1 02
(Ul,...,’U/kfl,’U/k)=(d1,...,dk71,dk) p2 ) )

Ok
Pk

so that dp = (ug — opdg—1)/pr- As done in LSQR, these recurrence relations can be
further simplified if we define dj < pidx.

9
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3.3. Recurrence for y;. We can recover y;, with a little bit of extra work every
iteration, rather than recovering y at termination. Define T}, = (¢1,...,%), so that
Y = Vi = —Vi Ly " JiZ,
(Vi Ly Tk R ) (= Qi dren)
= Ti(—¢r)
= Yk—1 — Pklk-

Since Ji and ¢y, are already computed, we need only compute T. Define

Aope V3
Ry JiLj;, = Ak—2 pe—1 V|
Ak—1 Mk
Ak

which is updated column by column every iteration, since Rj and L{ are upper
bidiagonal. In particular, the recurrence relations are

Ak = PrSkQ, k=1,
pr = pr—1&k—1Bk + oréra, k=2,
Vg = 0p—1&§k—15k, k> 3.
Since V, = Tk(RkaLg), we have
A1op2 V3
(01, V=2, V=1, 0k) = (t1,- - -+ th—2, th—1, tr) Mo fho1 Uk ;
Ak—1 Mk

Ak

which means that t; = (vx — prtp—1 — Vite—2)/ k-

3.4. Estimating the Residual. We can estimate the residual at every iteration
cheaply. Define 7, = 611 — CxZk, and 1y, = Zj, 17k, and note that by the definition

of Y,
O D6 -5 2)(2)- D)
(5 ()

_ (TOk)

Since Zj, is orthogonal, the norm of the full residual is equal to 74| = [rg]|-

The immediate consequence is that since |7g| decreases monotonically by the
definition of subproblem (18), the full residual must decrease monotonically as well.
We summarize this result in the following theorem.

THEOREM 4. The norm of the residual given on the left hand side of (19) de-
creases monotonically every iteration of SPMR-SC.

10
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Since the residual norm is equal to |Gz, — g|, we can estimate the residual as
|76 = dry1 = 615182 ... sk, as is done in LSQR.

Monotonicity of the residual is an attractive property for nonsymmetric problems,
as it may provide a notion of robustness and predictability. There is a potential
advantage here from a computational point of view: short recurrences are not given
up as in GMRES [26] to acquire this monotonicity, nor do the short recurrences give
up the monotonicity as in biconjugate based methods.

3.5. Relationship Between SPMR-SC and USYMQR. In subsection 2.5,
we showed the mathematical equivalence between SIMBA and orthogonal tridiagonal-
ization. Using this, we can now show that SPMR is equivalent to USYMQR applied
to the Schur complement system —Sy = g¢.

Recall that both SIMBA and orthogonal tridiagonalization generate the same basis
(in exact arithmetic) such that

SVi = Ze1 T = Zi i1 Cr i LY,
where T}, = C’kaL{ e RE+Dxk g tridiagonal. USYMQR solves the subproblem

y,? = argmin | — Cu JL LY G — d1e1| s.t. y = Vig.
y

Recall that Zy = —JiLL ), in SPMR-SC, and recall that (from (18)) SPMR-SC solves

yr, = argmin |CxZ — 011 s.t. &= —JpLLG, y = Vil
y

These are the same subproblems, and so we obtain that y, = y,? every iteration,

meaning that SPMR-SC and USYMQR generate the same iterates in exact arithmetic.

This result is analogous to the equivalence between LSQR and CG on the normal
equations [24], or LSMR and MINRES on the normal equations [11]. However, numer-
ically we may have the upper hand. As in the cases just mentioned, we observe that
SPMR-SC can be more numerically stable than USYMQR applied an ill-conditioned
Schur complement, which we demonstrate in section 8.

4. SPMR-NS: a Null-Space Based Version of SPMR. SPMR-SC as it has
been introduced so far, requires the inversion of the matrix A. This matrix may
not, always be invertible, and even when it is, the inversion may be computationally
prohibitive. We now introduce a sub-family of SPMR which avoids inverting A, and
instead opts for using the null spaces of G; and G3. ‘NS’ stands for null-space, since
we are projecting onto the null spaces of G; and Gs.

SPMR-NS is basically SPMR-SC applied to the dual system (8). What makes
it interesting is the fact that by using the dual system we are able to eliminate
dependence on the inversion of A, and instead rely on the null spaces of G; and
Gs.

We can define the same subproblem on the dual saddle-point system to minimize
the residual (of the dual system), and use the same recurrences to obtain approxima-
tions px and g at each iteration.

It should be noted that this method will only obtain approximations to x = —px
at every iteration, but y needs to be recovered after convergence by solving a least-
squares problem with GT. This is consistent with the situation in PPCG and other
projected methods [16, 17].
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SPMR-NS is thus equivalent to USYMQR applied to the generalized reduced Hes-
sian defined in (3), for the same reasons that SPMR-SC is equivalent to USYMQR
applied to the Schur complement. We note that in [1, 4], iterative procedures for
symmetric systems are proposed, which apply the conjugate gradient method to var-
ious constructions of the reduced Hessian. This is related to SPMR-NS, which in the
symmetric case is equivalent to applying MINRES to the reduced Hessian.

4.1. Estimating the Residual. Just as in SPMR-SC, the residual norm in the
dual saddle-point system can be estimated cheaply. Define

0 ()= Cirg) (a0 () 0 (5)- () - (6 D) ()

as the dual and original residuals respectively. The zero block in the dual residual
follows from a derivation almost identical to (19). The zero block in the original
residual follows from the fact that xj € ker(G2) for all k.

We can relate ||r}|| to an energy semi-norm of 74, where the semi-norm is in fact
a norm on the null-space of G;. We’ll see that 1y € ker(G1), and therefore if r,iv — 0,
this will imply that rp — 0. This is captured in the following theorem.

THEOREM 5. Let pi and gy, be generated by SPMR-NS. Suppose xy, = —py, and let
yr solve the least-squares problem GTy = f — Awxy,. Define the residuals as in (20).
Then

HTIJCVH = |7'k|H1H1T;

1
where |~|H1H1T is a semi-norm defined by |u\H1H1T = (uT(H1H{ )u)?. In particular,

ri € ker(G1), and so this energy semi-norm induces a valid norm on the residuals.

Proof. We have

Il = = H{ f — HY Apg|
= |[H(f = Ay)
= [H{ (f = Az — Gy |
= [H{ 7y
= |r7€‘H1H1T7

where we used that G1H; = 0. Now, since y;, is defined by the least-squares solution
to GTy = f — Axy, the residual must be orthogonal to the range space of GT, which
means that r, € ker(G;). Since ry € ker(G1), then r,JCV — 0 implies r, — 0, which
means that the semi-norm is in fact a valid norm on the residual. 0

Thus, even though we do not have access to the ¢;-norm of the original residual,
we can obtain a measure of convergence using the residual norm of the dual system.
Furthermore, as discussed in the following section, many of the approaches for com-
puting projections (matrix vector products with H; and H}') result in H;H{ being
an orthogonal projector onto the null space of G;. In such cases, we will have the
desired property that [rd | = |rg].

4.2. Computing Projections onto the Null-Space. SPMR-NS has the at-
tractive feature that it does not require A inversion. On the other hand, it does
require some knowledge of the null spaces of the off-diagonal blocks, G; and Gs. In
this section we discuss strategies for dealing with matrix-vector products with these
null-spaces.

12

This manuscript is for review purposes only.



ot

o =

W W W W w w
s B BN |

388

389
390
391
392
393
394
395
396
397
398
399

402
403
404
105

406
407
408
409

410

411

412

413

414

NN
e
Ut

The simplest approach is to have a null-space bases H; available for each off-
diagonal block G, i = 1,2. Then products of the form H;c, and H! ¢ can be computed
explicitly, and SPMR-NS can be carried out exactly as SPMR-SC would be applied
to the dual saddle-point system. Although this would be the simplest approach to
implementing SPMR-NS, it may be expensive to compute a null-space basis, and this
basis would likely be dense.

Another possibility is to use the method outlined in [16], by computing an or-
thogonal projection. That is, matrix-vector products of the form H;c and Hlc are
replaced by (I — GT(G;GT)~1G;)c. This requires one solve against G;G! per applica-
tion, which is only of size m x m, and is therefore manageable in many applications.

An equivalent approach to computing the same orthogonal projector is to instead
solve a system involving a constraint preconditioner [22]. In order to compute products
of the form d = (I — GT(G;GT)71G;)c, we can instead solve the system

o (e §)()-6)

where we take only the first component of the solution. Although this computes the
same vector, there may be more flexibility in the solution methods applied to this
saddle-point system.

Since the two previous approaches to computing H,z are effectively computing
the residual to the least-squares problem Gde = ¢, other techniques may be employed,
such as using LSQR directly as described in [28]. This may avoid conditioning issues
which may occur from solving the normal equations.

It should be noted that all of the null-space basis-free approaches mentioned above
which are effectively based on solving least-squares problems, implicitly produce an
orthogonal projector onto the null-space of G;. Due to this, the seminorm || HHT

becomes equivalent to the £2-norm on the null-space of G; since H; H} is an orthogonal
projector onto said null-space. Therefore, estimating the norm of the dual system for
SPMR-NS becomes equivalent to estimating the residual norm of the original system.

5. Properties of the SPMR Solvers. Having derived SPMR-SC and SPMR-NS,
we now discuss a few useful properties of these methods. Specifically, we provide
details on the circumstances of breakdowns, and discuss the issue of convergence
under spectrum clustering.

5.1. Breakdowns. As in other biconjugate methods, we have the possibility of
lucky and unlucky breakdowns. Let us again use the notation 7" to denote either the
Schur complement S if SPMR-SC is considered, or the generalized reduced Hessian R
if SPMR-NS is considered. That is,

(22) T = { S, defined in (2), if SPMR-SC is considered
R, defined in (3), if SPMR-NS is considered

If 211 = 0 for some k, we can consider this as a lucky breakdown as it implies that
we can reconstruct the solution to Ty = ¢ using v1,...,v;. This is because

0=c+TT c+ -+ (TTH*R e 4 T+ TTTTH + - - + (TTT)LE=2/2Tp
=c+T (TTc o (TTTYFAATT e L b TTTH + - (TTT)“’“‘Q)/QJ‘lb)

¢+ T -span{vy,..., v}
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If vg+1 = 0 for some k, this is a form of an unlucky breakdown since as it means
that we have found a solution to the transposed system T7y = b. If such a breakdown
occurs, it may be possible to restart with a different v, to avoid this breakdown in
future iterations.

Other unlucky breakdowns occur when w] Au, ~ 0, in the spirit of unlucky
breakdowns for methods such as BiCG and QMR [10, 13, 32]. It is likely that we will
be able to employ look-ahead strategies as discussed in [12, 25], although we will not
further pursue this here.

5.2. Convergence Under Spectrum Clustering. The speed of convergence
of SPMR-SC or SPMR-NS is related to the distribution of singular values of T'. Specif-
ically, when the singular values are clustered we may expect fast convergence that
depends on the number of distinct singular values.

THEOREM 6. Denote the dimension of T by t. If T has ¢ distinct singular values,
Algorithm 1 or Algorithm 2 will terminate in

¢ < min(24,t)

steps in exact arithmetic, that is, zz,; = 0.

Proof. T is m-by-m if SPMR-SC is considered, and (n—m)-by-(n—m) if SPMR-NS
is considered. SIMBA-SC (Algorithm 1) must terminate in at most m steps and
SIMBA-NS (Algorithm 2) must terminate in at most n — m steps, since z; € R™ and
so any m + 1 vectors must be linearly dependent. Suppose then that 2¢ < ¢, where ¢
is determined according to the method used.

Let the left singular vectors of T be p;, and the right singular vectors be g;
with corresponding singular values o;. Then o;p; = T'¢; and 0;¢; = TTp;. Thus if
b= Zf=1 7:¢; and ¢ = Zf=1 0;q;, then

L L
(TTT)]Cb — Z nlafkq“ (TTT)ka — 2 T’io-»?k+1p1j,
1=1 1=1
V4 £
(TT")*e = ;07 ps, (TTTY* T e = 3 0:07% g
i=1 i=1

Thus vectors generated by applications of T and T7, always live in the span of
{p1,...,pesq1,-..,q¢} which has dimension at most 2¢. Then this means that the
number of linearly independent z; cannot grow beyond 2¢ and therefore SIMBA-SC or
SIMBA-NS must terminate in at most 2¢ iterations. O

The dependence of SPMR-SC and SPMR-NS on singular values of the Schur com-
plement or the generalized reduced Hessian, as highlighted in Theorem 6, will affect
preconditioning strategies (discussed in section 7), and may make the method attrac-
tive over other Krylov methods in some instances. One potential situation where
this may be beneficial is for highly non-normal 7', where it is significantly easier to
characterize the convergence based on singular values rather than eigenvalues [19].

6. SPQMR. As we have shown in Theorem 6, the performance of the SPMR
solvers SPMR-SC and SPMR-NS depends primarily on the distribution of the singular
values of the Schur complement, S, or the generalized reduced Hessian, R, respec-
tively. In many situations the distribution of eigenvalues is better understood than
the distribution of the singular values, and eigenvalue clustering may be easier to
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accomplish. We now introduce a variant to SPMR which we call SPQMR, whose con-
vergence properties rely on eigenvalue distribution of either S or R. This variant
requires sacrificing the monotonicity of the residual norm, but this may be a price
worth paying. Like we did for SPMR, we will have two main variants: SPMR-SC
and SPMR-NS. As we will show, SPQMR-SC is mathematically equivalent to QMR
applied to the Schur complement, but it is numerically more stable in the sense that
there is no effect akin to squaring the condition number. Similarly, SPQMR-NS is
mathematically equivalent to QMR applied to the generalized reduced Hessian.

6.1. SIMBO: Simultaneous Bidiagonalization via Bi-Orthogonality. The
main difference between SPMR and SPQMR is in the bidiagonalization procedure,
which replaces orthogonality of Vi and Zj with biorthogonality. We start with the
‘SC’ version of SIMBO, which requires A inversion.

6.1.1. SIMBO-SC: Using A Inversion. Suppose A is invertible, and inverting
it is computationally viable. Instead of the procedure laid out for SIMBA-SC, let us
construct bases Uy, Vi, Wi, and Z; which satisfy the relations

GV = AU J LY, WTAU,, = Ji,
G1Wy = Zj11 By, ZVi =1,

(23) T T T

Gy Zy, = A" Wy J My, |

G2Uy = Vi 1Ch,
where again, Jj is diagonal such that (Ji);; = & = £1. We have marked in red the
quantities that have changed, compared to the original bidiagonalization procedure
SIMBA-SC described in Algorithm 1 (see also (12)). Specifically, Vi1 and Zg1 have
been swapped, and the requirement that Vj and Z; be orthogonal has been replaced
by a bi-orthogonality requirement.

This modified simultaneous bidiagonalization results in Algorithm 3. Analogously

to Theorem 2, it can be shown that Algorithm 3 produces the desired relations in (23).
We call this procedure SIMBO-SC.

6.1.2. SIMBO-NS: Using Null Spaces of G; and G5. Suppose now that
instead of inverting A, computing the null spaces of G; and G35 is necessary, or pre-
ferred. As usual, let H; and Hy be such that GiH; = GoHy = 0. Instead of the
requirements for SIMBA-NS, we require:

HIV}, = Up i LY, WIAUy, = Ji,
Hy AWy, = Zj, 11 By, ZHV, =1,
HI 7z}, = ATW,. g, M,
H{ AU, = V41 Cy,

(24)

The changes have been marked in red, compared to Algorithm 2 and (13).

6.2. Search Subspace. We can classify the spaces in which the bases live in
Theorem 7 in a result analogous to Theorem 3.

THEOREM 7. Define T as in (22), and let f1v1 = b, 6121 = ¢. Then
v € span {b, Tb, T?b,..., T" b},
2k, € span {c, T e, (T2, ..., (TT)k_lc} .
For SPQMR-SC we have uy, € span {AilGlTVk} and wy, € span {AiTGng}, whereas
for SPQMR-NS we have u € span {HQTVk} and wy, € span {HlTZk}.
15
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Algorithm 3 SIMBO-SC: Simultaneous Bidiagonalization via Bi-Orthogonality, Us-
ing A Inversion

INPUT: A, Gh GQ, b, C

U1
g
U1
(1

—b

1/2
— sgn(vf z1) (Jvf 1))

<« U1/61

<« G?’Ul

<« Ailﬁl

— sgn(w] 4y)
— |wlay |
< flul/al

for k=1,2,... do

Vg1 < Goup — Vg

Ok+1 < Sgn(”}fﬂzkﬂ) (|U{+1Zk+1
Vk41 < Vkt1/0k41,

g1 < Giogs1/Brst

Uiy — A7 g1 — kBt
Eha1 — sgn(wiy ki)

st < (Wi s

U1 < Epp1Uks1/Qpr1

|)1/2

end for

Z1 < C

pr

(joF z]) "2

Rl < 2’1/51
’LDl <« ngl
Wy < AiT’Uf)l

Y1 < Qa1
wy «— &wi /1

Zp+1 — Grwy — agzy

Brr1 < ([fs12041
241 — Zut1/B

|)1/2

k+1

~ T
Wyy1 < Ga2p41/0k41
7.
Wgy1 < A7 Wrp1 — EpOrp1wi,

Ve+1 < Qk+1
Wg+1 < €k+1wk+1/7k+1

Algorithm 4 SIMBO-NS: Simultaneous Bidiagonalization via Bi-Orthogonality, us-
ing the null spaces of G; and G2, namely H; and H; such that G1H; = 0 and
GyH; = 0.

INPUT: A, H,, Ho, b, c

U1

—b

1/2
sen(vl z1) (joT z])

-
<~ U1/51

«— Havy

<« AU1

— sgn(w] @)
— |wy ﬁl|l/2
— &u/og

for k=1,2,... do

Vg1 — H{ e — Yeve

Ok+1 < Sgn(vgﬂzkﬂ) (|UI{+1"5’€+1|)1/2
Vk+1 < Vk4+1/0k+1

U1 < Hovgy1/Br+1 — §pBrr1uk
Upq1 «— Aupiq

Skr1 < Sgn(w1{+1ﬂk+1)

Q41 < ‘wkT+1ﬁk+1‘1/2

U1 < Spr1Ups1/ Okt

end for

21

21

-
B (Jv 1
«—

c
|)1/2

2’1/61

wy < Hyiz
Qf}l <« AT’LUl

71— Qg
wy — &wi /1

Zk+1
Br+1
Zk+1
Wg41
W1

VE+1
WE+1

<« HQATQf}l — 2k

1/2
— (i zr11l) /

— 241/ Bt
— Hizpi1/0k41 — Epbpr1wi
— Alwi 4

< Qg1
— Ehr 1 Wh 1/ Vit 1
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6.3. SPQMR-SC and SPQMR-NS. Similar to SPMR-SC, if we choose §,v; = g,
Algorithm 3 produces bases which satisfy

A G{ T\ 0 _ A G{ U, 0 Tk _ 0
Gy 0 Yk 9 G2 0 0 Vi) \Uk g
() (@) E)-6n)
0 Vi1 Cr 0 ) \uk drer) )’
We can again solve the QMR subproblem

5 (5) -~ (se,)

which is equivalent to the subproblem

(25) min
@y

s.t. x = Ui, y = Viy.

(26) min [|CxZ — d1e1]| s.t. = UgZ.

From this point the recurrence relations for constructing x; and y; are the same as
in subsection 3.1, as the structure of suproblem (25) has not changed.

As in (19), the residual here has a zero block, i.e., the same structure. But we
can only obtain an upper bound as done in [13], because Vj is not orthogonal. This
means that at the kth iteration,

”TkH < \/m51 S1...5k.

For SPQMR-NS we can derive analogous results, using the dual saddle-point system
and a different right hand side; details are omitted.

6.4. Comparison of SPMR to SPQMR and Relations to Other Meth-
ods. An immediate difference between SPMR and SPQMR is that Z; and V. are not
orthogonal in SPQMR, and therefore the residual does not decrease monotonically
with every iteration. Furthermore, the lack of orthogonality in the bases means that
residual estimation requires an upper bound rather than an exact estimate.

The other major difference is that SPMR has convergence that depends on the
clustering of singular values of the Schur complement or the generalized reduced Hes-
sian, compared to SPQMR whose convergence depends the eigenvalues when the Schur
complement or the generalized reduced Hessian are diagonalizable. This difference af-
fects preconditioning strategies, as there can be saddle-point matrices with Schur
complements whose eigenvalues are clustered (e.g., triangular matrices with constant
diagonal), but with unclustered singular values. The converse is also possible (e.g.,
orthogonal matrices).

Similar to how SPMR-SC is equivalent to USYMQR applied to the Schur comple-
ment, SPQMR-SC can be viewed as being equivalent to QMR being applied to the Schur
complement. As the relationship between orthogonal tridiagonalization and SIMBA
is explored in subsection 2.5, a similar analysis can be made to show that SIMBO is
unsymmetric Lanczos applied to the Schur complement. SPQMR-SC is equivalent to
QMR applied to the Schur complement by an argument similar to subsection 3.5.

We also comment on the case where K is symmetric, with particular attention
to A being symmetric positive definite. If I is symmetric, then both SPMR-SC and
SPQMR-SC become the same method. Furthermore, if A is SPD, then it becomes a
form of Generalized LSQR [3]. If A is indefinite, then our method differs from other
generalized LSQR methods, which handle only the positive definite case.
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y \ SPMR \ SPQMR

monotonic residual v X
short recurrence v v
bidiagonalization procedure SIMBA SIMBO
depends on singular values of T' | eigenvalues of T’
mathematically equivalent to USYMQR on T’ QMR on T’

Table 1: Comparison of properties of SPMR vs. SPQMR. The matrix T denotes either
the Schur complement or the generalized reduced Hessian; see (22).

Similar observations can be made for SPQMR-NS, where the Schur complement is
replaced by the generalized reduced Hessian. We note, however, that fewer analogies
are available in the symmetric case, because solvers based on reduced Hessians have
been explored less comprehensively than solvers associated with the Schur comple-
ment.

We summarize these observations in Table 1.

7. Preconditioning. To develop a preconditioned version of SPMR, we will
need to maintain the saddle-point structure of the matrix, and this presents a few
challenges. If the preconditioner is symmetric positive definite, then weighted inner
products are well defined and we will directly modify the bidiagonalization procedures
SIMBA and SIMBO; otherwise we will modify the operator directly and apply our
methods to the preconditioned matrix.

In general, the approach will be to use right preconditioners of the form

(27) P— (é j&)

This leads to the relationship (for the ‘SC’ sub-family of methods)

wpt (Us O _ (AU 0 (Jy LT
0 Vi) 0 Zp1) \Cr 0 )7

which is achieved in two different ways, depending on whether M is an SPD precondi-
tioner or not. If M is SPD, we modify SIMBA and SIMBO to use M ~!-orthogonality
in Vi and Zy; if M is not SPD, then we can practically run unpreconditioned SIMBA
or SIMBO on KP~!. For the ‘NS’ sub-family, this discussion also applies, but to the
dual system.

7.1. Preconditioned SIMBA. For symmetric problems with SPD precondi-
tioners, symmetry can be retained by modifying the bidiagonalization procedure. To
that end, assume that M is a positive definite matrix of size m x m. We will describe
the (right-)preconditioned SIMBA process, noting that preconditioned SIMBO is quite
similar and for the sake of brevity will not be explicitly described.

Preconditioned SIMBA compared to the unpreconditioned version trades orthog-
onality of V4, and Zj for M~ !-orthogonality. For SIMBA-SC, the following relations
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are satisfied:

GIM™V, = AULJLLE, WEAU, = Jy,
(28) G1Wy = Viy1 By, ViMT'W =1,
GEM~1 2z, = ATWy M, ZIM 7, =1,

G2Uy = Zj41Ck.

Changes from the unpreconditioned relations, (Algorithm 1 and Equation (12)), are
marked in red. The resulting procedure is summarized in Algorithm 5.

Algorithm 5 Preconditioned SIMBA-SC
INPUT: A, Gl, GQ, b, C, M

’01 =b 21 =cC

v = M71@1 zZ1 = 712?1

61 = (@?U1)1/2 61 = (2?21)1/2

v = v1/br z = 21/01

le = G{M_l’ul ’li}l = GQTM_lzl

uy = A_lﬂl w1 = A_Tﬁ]l

&= sgn(wfﬂl)

ay = |w] iy [ M=o

uy = &ruy/ag wi = & wi /M

for k=1,2,... do
Vg1 = Grwy — oy Zp+1 = Gaup — Y2k
k1 = M gy Zpy1 = Mz
6k+1 = (U£+1@k+1)1/2 5k+1 = (sz+12k+1)1/2
Vg1 = Uk+1/5k+1 Zk4+1 = Zk+1/5k+1
ak+1 = GlTﬁkH/ﬂkJrl wkz+1 = Ggﬁk+1/6k+1
Up1 = A g1 — EeBrr1up Wit1 = A g1 — EpOp1wi
ki1 = sgn(wgﬂdkﬂ)
R e e Vh+1 = Opg1
Uk41 = Epp1Uk+1/Qpt1 W1 = a1 Wht1/ V41

end for

The exact same procedure is applied to SIMBA-NS, and as before, this is done for
the dual system, (8); see Algorithm 6.

All recurrences applied to the resulting bidiagonal matrices carry through as de-
scribed in section 3. As this is equivalent to right-preconditioning, at the end y needs
to be recovered via an additional M-solve, that is, y « M™1y.

7.2. Preconditioned SPMR-SC and SPQMR-SC. If the preconditioner is
not symmetric positive definite, then it is impractical to precondition the bidiagonal-
ization procedures SIMBA and SIMBO directly; instead we modify the saddle-point
system directly. Theorem 6 and Krylov subspace theory may be used to show that
if the Schur complement has clustered singular values then SPMR-SC will converge
quickly, and if it has clustered eigenvalues then SPQMR-SC will converge quickly.
Furthermore, preconditioners must be block diagonal in order to maintain the saddle-
point structure of the operator. Therefore, if S ~ S is an approximation to the Schur
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Algorithm 6 Preconditioned SIMBA-NS

INPUT: A, Hy, Ho, b, ¢, M

01 =10 Z=c
v = M_l’f)l zZ1 = ./\/1_121

. 1/2 R 1/2
pr = (UlTvl) / oy = (21T2’1) /
v = 01/51 z21 = 21/51
uy = HoM 1oy wy = HiM 1z
’ELl = Au1 ’lf}l = ATw1
& = sgn(wi i)
oy = |wla, V2 "=y
up = &uy /o wy = &wy /1

for k=1,2,... do

T A
Vpy1 = Hy W — apvg
. —1
g1 = M Uy

Brr1 = (Vii10k41) V2

Vg4+1 = Uk+1/5k+1
U1 = HaOgy1/Br1 — EpBrriu
Upr1 = Augyr

— o« T -
k1 = bgn(wk-ﬁ-luk-‘rl)

T

Ag+1 = |wk+1uk+1|1/2
U1 = Epgp1Uk41/ g1

T ~
Zht1 = Hy U — Y2k
5 -1
Zy1 = M zpg

T N 1/2
Oky1 = (Zk+12k+1)
Zk+1 = Zk+1/5k+1

Wit1 = H1Zp41/0k11 — EpOrg 1wy,

- T
W1 = A" w41

Ve+1 = Qg1
We+1 = Ehtr1Wht1/Vh+1

end for

complement, then we seek left- or right-preconditioners of the form

()

For right-preconditioning, this will be equivalent to using the right-preconditioned
operator

(29) kPt = (A G1T§1>.

Go 0

Computing solutions to linear systems of the form Sd = ¢ can be performed in an
alternative fashion as well using a constraint preconditioner. Using an approximation
to the leading block A ~ A, we can instead compute the solution to the linear system

A GT\(+\ [0

G2 0 d B —c)’
keeping only the second component d. We note that the key requirement here is
preserving the block structure, therefore it is possible to also approximate the off-

diagonal blocks GG; and G3. That is, it is not necessarily the case that a constraint
preconditioner must be used.

7.3. Preconditioning SPMR-NS and SPQMR-NS. Since the ‘NS’ methods
are effectively SPMR-SC and SPQMR-SC methods applied to the dual saddle-point
system (8), the strategy for preconditioning is analogous to the previous section in that
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we want to approximate R = H{ AH,, but instead of working with the preconditioned
(primal) saddle-point system, we will work with the preconditioned dual saddle-point
system,

1 (A AH,R!
(30) KpP _<H1TA 0 )

If null-space bases H; and H, are given, then it is feasible to construct such an
approximation, but such an approach would be difficult if H; and Hs are implicit
operators or if they are not easily available.

We start our quest for designing a preconditioner for the NS sub-family by as-
suming that H; and Hy are available and have full rank. This requirement will be
eliminated later on. Consider the ideal preconditioner R = HT AH,, so that the
preconditioned dual saddle-point matrix (30) can now be written as follows:

A AHQ(H,{AHQ)_l
) (4, AmAm™
1

We say that this choice of R gives an ideal preconditioner because the Schur comple-
ment of the above matrix is the identity. Since we are interested in a strongly clustered
spectrum for the Schur complement, this observation is useful as a starting point for
designing a preconditioner. Of course, the (1,2)-block cannot be easily computed and
we need to find ways to alleviate this difficulty. First, if A ~ A is an approximation
for the leading block, we can make the representation more practical. Next, we can
instead consider computing matrix vector products of the form

(32) d=Hy(HI AHy) 'HTc.

If we compare (32) to the (1,2)-block of (31), we observe that main difference is in a
pre-multiplication by H{ and the post-multiplication of A which is trivial to apply.
Systems such as in (32) can be relatively easily computed by solving the constraint
preconditioner system

2 (& D) ()-0)

To see this, notice that the matrix in (32) is precisely equal to the leading block of
the inverse of the matrix in (33) [5, 9]. Thus it is no longer necessary to have H; and
H, available explicitly; we can accomplish computation of d by solving a constraint
preconditioner.

8. Applications and Numerical Experiments. In this section we numeri-
cally illustrate the features of SPMR and its variants.

8.1. Nearly-Orthogonal Schur Complement. We begin with an example of
the performance of members of the ‘SC’ family, highlighting the distinction between
having well clustered singular values and well clustered eigenvalues for the Schur
complement. We generate the system

60 €)= (ae §)6)- ()

where n = 700, m = 400, g is random, A is a nonsymmetric diagonally dominant
sparse random matrix, Gy, G5 are sparse random matrices, and () is a random or-
thogonal matrix. The sparse matrices were generated via MATLAB’s sprand, with a
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density of 0.1, and @ was generated via the QR factorization of a random matrix. A
is made diagonally dominant by adding a multiple of the identity.
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(a) Eigenvalues in the complex plane of (b) Singular values of the preconditioned
the preconditioned Schur complement of  Schur complement of problem (34).
problem (34). For convenient visualiza-

tion purposes, a small number of the
larger eigenvalues are excluded from the
figure.

Fig. 2: Spectrum of preconditioned Schur complement of problem (34) in Subsec-
tion 8.1.

Since A is diagonally dominant, a reasonable approximation to the Schur com-

plement is
S =GyD7'GT

where D is the diagonal of A. We can thus write QGgA‘leS’_l ~ (, which means
that the Schur complement would have a well distributed spectrum of singular values,
while the eigenvalues would be spread around the unit circle in the complex plane.
Recall that SPMR-SC rapidly converges when the singular values of the Schur comple-
ment are strongly clustered. Solvers whose convergence rate depends on eigenvalues
may not perform as well in this case.

We plot the eigenvalues in the complex plane in Figure 2a, and the singular values
on a semilog plot in Figure 2b, which confirm our claim for this example.

Consider the right preconditioners

(35) Py - <é g) and 7%:(‘3 g)

We compare the performance of SPMR-SC and SPQMR-SC, where we use the pre-
conditioner Py, and GMRES where we use the preconditioner Py. The results are
presented in Figure 3, where we track the residual norm per iteration.

As expected, SPMR-SC converges quickly due to well clustered singular values.
On the other hand SPQMR-SC and GMRES are not competitive since the eigenvalues
of the Schur complement are spread around the complex unit circle. GMRES takes
exactly 2m + 1 iterations, since it’s applied to the operator

-1 _ I GTS
kP, = (QGQAl 0 )’
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Fig. 3: |ry| for problem (34) of Subsection 8.1.

whose eigenvalues are 1 (with algebraic multiplicity n—m) and the other 2m eigenval-
ues are £\ where ) is an eigenvalue of the Schur complement of the above operator,
QG2A7IGTS, which are not clustered.

8.2. Highly Non-Normal Generalized Reduced Hessian. We show an ex-
ample where SPMR-NS outperforms typical Krylov methods in terms of convergence
behavior of the residual norm. In this case we take a saddle-point matrix such that
the leading block A is an n x n Grear matrix [30, Ch. 7], and the off-diagonal blocks
G =Gy = (F1 Fg), with Fy, F, e R2*% and |Fi|z » ||Fa|. We choose n = 1000,
and take the right-hand side to be of the form (f7, 07)7 with f random.

We run unpreconditioned SPMR-SC and SPQMR-SC, where we use the null-space

matrices 1
H, =H, = <F1_1F2>.

For the purpose of comparison, we run GMRES and LSQR preconditioned with
P ( I GT ) .
Gy O
We use the constraint preconditioner due to its relationship to projections onto the
null-space of the off-diagonal blocks. Thus, we can now talk about comparable iterates
in terms of projections onto the null-space. The norm of the residual is plotted in
Figure 4.

It is known that nonsymmetric Krylov subspace methods may suffer on highly
non-normal matrices such as the Grear matrix [30]. Since | Fi[ » |Fz||, most of the
mass of the null-space basis is in the identity block. This means that the generalized
reduced Hessian exhibits spectral behaviour similar to A. We can see in Figure 4

that LSQR has trouble converging, and GMRES and SPQMR-NS which depend eigen-
values do not converge too quickly. On the other hand, we see that SPMR-NS has
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Fig. 4: ||rg| for the problem of Subsection 8.2.

fast convergence, since it depends on the singular values of the generalized reduced
Hessian.

8.3. Effect of Conditioning on SPMR-SC. We next demonstrate the strong
performance of SPMR-SC in comparison with solvers that work directly on the Schur
complement. As we have shown in subsection 3.5, SPMR-SC works on the entire
saddle-point system but is mathematically equivalent to USYMQR applied to the
Schur complement system Sy = —g.

Consider the saddle-point system

o <)~ (& )60

where in this case, n = 600, m = 300, g is random, and A is a block tridiagonal
matrix of the form

B -1
-1 B -I
A: oL t. )
-1 B -1
-1 B
with
4 —149
-1-94 4 -1+
B: . c. I
—-1-46 4 —14+9
—-1-94 4

where § = 0.1. The matrix A is a finite difference discretization of a simple 2D
convection-diffusion equation with constant coefficients on the unit square. G; is a
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Fig. 5: Performance of SPMR versus USYMQR on problem (36).

random matrix whose condition number has been set to be £(G1) = 10°, while G5 is
a random perturbation of G so that it has a similar condition number. This results
in x(S) ~ 10%. The exact solution z, and y, is obtained via MATLAB’s backslash
operator.

In Figure 5a and Figure 5b we see the residual and error norms at every iteration
respectively. It is clear that even though in exact arithmetic the two would produce
the same iterates, we we obtain 4 digits of accuracy more using SPMR-SC on the entire
saddle-point system as compared to USYMQR on the Schur complement. This result
is similar in spirit to the improved stability in LSQR over running CG on the normal
equations [24].

We note that this property may not always manifest itself as it would in the
symmetric case where A is positive definite. Since these are nonsymmetric problems,
there could exist cases where it may be beneficial to form the Schur complement over
working with the full saddle-point system. That being said, in cases when the Schur
complement has a large condition number which is nearly the product of the condition
numbers of G; and G5, we would expect SPMR-SC to outperform methods that work
directly on the Schur complement.

8.4. Interior-Point Methods. Constrained optimization problems provide a
rich source of saddle-point systems in various forms. Consider quadratic programs
and their corresponding duals, of the form

(37) min ¢’z + %mTHx subject to Jr=0b x>0,
xr
(38) max bTy — %xTH:c subject to J'y+z—Hz=¢, z>0.
z,y,2

One of the most popular classes of techniques for solving this problem are interior-
point methods. They are based on relaxing the complementarity conditions by intro-
ducing a small parameter-dependent perturbation. The Newton step is ‘corrected’ by
steering the iterate towards the so called ‘central path’ [23]. The extent by which this
is done depends on the proximity to the solution and other considerations.
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The perturbed optimality conditions are

c+Hx—JTy—z
(39) Jxr—b =0, (x,z) > 0.
Te — XZe

The parameter T is initially set as a small positive number and is gradually decreased
towards zero as we approach the optimal solution. There are various strategies for
selecting the value of 7. Solving the mildly nonlinear system (39) using Newton’s
method results in the linear system

H -1 JT Az —c—Hz+JTy + 2
(40) -Z -X 0 Az | = b—Jz
J 0 0 —Ay XZe—rTe

The linear system (40) is nonsymmetric. The matrices X and Z are diagonal,
but they grow increasingly ill-conditioned as the solution of the optimization problem
is approached, due to driving 7 to zero. It is possible to symmetrize (40), but doing
so requires inverting Z, and this may affect the numerical stability of the solution
procedure, although the effect is subject for debate. Issues related to conditioning of
the matrices involved in the interior-point linear system have been subject to extensive
exploration; see, for example, [34].

We may opt to solve the linear system by forming the Schur complement, and
there is more than one alternative here. In [20] a comprehensive study was conducted
on the condition number (40) and reduced versions based on block Gaussian elimina-
tion. It was shown that from a conditioning point of view, the unreduced 3-by-3 form
is more robust near the optimal solution, compared to reduced versions.

Forming the Schur complement may yield a highly ill-conditioned matrix, and
the inversion of the leading block in this case may be computationally prohibitive,
especially if the Hessian H is hard to deal with computationally (note that it may
often be indefinite). We thus resort to using null spaces. Since null-space methods
are a popular approach to solving problems with linear constraints, it is reasonable to
have a linear mapping to the null-space of J, which we will call C. In this case, we will
use the orthogonal projector C = I — JT(JJT)~1J. We also modify the right-hand
side by finding a particular solution Az such that JAzg = XZe — Te, so that we
instead solve the system

H -1 JT Ax — Axg —c—Hx+JTy+ 22— JAx
-Z =X 0 Az = b—Jx
J 0 0 —Ay 0

Thus we can apply SPMR-NS and SPQMR-NS with

mem- ()

We compare SPMR-NS and SPQMR-NS against GMRES (both full and restarted
with a restart of 20), LSQR and BiCGSTAB. We take the polygon100 problem from
COPS [6] (in its nonnegative slack formulation), where n = 16347 and m = 10700,
and construct a quadratic approximation to the nonlinear program at the initial point
plus a small offset to move it off of the boundary. We can control how ill-conditioned
the problem is by moving x and z close to the boundary of the bound constraints.
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Fig. 6: |rk |2 using various values for  and z. xq is provided as part of the polygon100
problem. 1 denotes a vector of all ones.

We first run the iterative methods for various values of = and z which progressively
make the problem more ill-conditioned. We also precondition GMRES, BiCGSTAB
and LSQR with the constraint preconditioner

I o JT
P=|(0 I 0
J 0 0

We plot the residual norm per iteration in Figure 6 with various values of = and z.
In Figure 6a, all of the methods other than LSQR are comparable in performance, as
they tend to decrease the residual geometrically. SPMR-NS, SPQMR-NS, BiCGSTAB
and GMRES appear to have roughly the same rate (although BiCGSTAB is highly
irregular), while restarted GMRES decreases more slowly. Since SPMR-NS, SPQMR-NS
and BiCGSTAB are the fastest converging short-recurrence methods, they appear
appropriate for this problem.

As we make the problem more ill-conditioned in Figure 6b, we see that SPMR-NS
no longer converges, and although GMRES converges the most quickly, it begins to
become more expensive per iteration to do the reorthogonalization. We see SPQMR-NS
converges most quickly among the short-recurrence methods, while BiICGSTAB and
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restarted GMRES lag a little bit behind.

In the most ill-conditioned case, we see that SPQMR-NS converges first by far,
while GMRES takes significantly longer. Restarted GMRES, BiCGSTAB and LSQR
stall out around || ~ 10~%, while SPMR-NS has trouble converging at all. Thus we
see that SPQMR-NS is the most practical method in this case.
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Fig. 7: |rg| for SPQMR-NS on the polygon100 problems from Figure 6 with precon-
ditioning.

We now precondition SPQMR-NS by approximating the generalized reduced Hes-
sian, to see how the convergence behaviour changes. The generalized reduced Hessian

in this case is
- cTHC -CT

S\ -zZC -X )
Note that with the non-negative slack formulation, H will have large zero blocks
corresponding to the slack variables; therefore it is reasonable to approximate H by
the identity, so that the first block is replaced by CTC = C? = C since C is a
symmetric orthogonal projector. Therefore, we can approximate the reduced Hessian
by the block triangular matrix

~ C+al O

R~ 1= ( -ZC X>’

where « is a small value to make R nonsingular (we take o = 1073). Since X is
diagonal and C' is an orthogonal projector, solving against this preconditioner can be
done efficiently. Thus we now use the null-space operators

Hy = (C 1) , and Hy = H1 R

The residual norm convergence history for the 3 problems is given in Figure 7. Even
with a relatively simple approximation to R, we see that we can now take a fairly
reasonable number of iterations to converge, which makes SPQMR-NS a potentially
practical method for solving saddle-point systems arising from such optimization prob-
lems.
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[Problem | n | m [ SPMR-NS |

Ny 88 25 8
No 368 113 8
Ny 1504 | 481 8
Ny 6080 | 1985 8
Ns 24448 | 8065 8
Ly 353 98 6
Lo 634 179 6
Ls 2004 | 604 6
Ly 7544 | 2383 6

Table 2: Number of iterations for SPMR-NS for several problems to achieve relative
residual norm of 1071%. The N; problems correspond to a unit square domain whereas
the L; problems correspond to L-shaped domains.

8.5. Maxwell. A simple form of time-harmonic Maxwell equations can be writ-
ten as follows:

-V xVxu+Vp=f,
V.-u=0,

with appropriate boundary conditions. We point the reader to [21] for additional
details. A significant challenge in solving this problem is that the discrete curl-curl
operator is rank deficient, and hence the corresponding leading block of the saddle-
point matrix is singular (see, for example, [8, 9] for ways to deal with a highly rank
deficient leading block). For this reason SPMR-SC is not a viable candidate. On the
other hand, for SPMR-NS we can exploit the fact that the null-space of the off-diagonal
blocks of the matrix is explicitly known and can be expressed in a sparse fashion. We
therefore examine SPMR-NS.

The computational kernels involved in using SPMR-NS and SPQMR-NS are to
solve constraint preconditioners of the form

w6 DO = (FDO-6)

where M is the vector mass-matrix.

We solve against a random right-hand side of the form (f7,0)7, and record the
number of iterations required to achieve a relative residual norm of 10~!°. The results
are recorded in table 2.

Since this is a symmetric problem using a symmetric positive definite precondi-
tioner, SPMR-NS and SPQMR-NS are the same method. We see that SPMR-NS shows
perfect scalability with the given preconditioner.

We note that scalable solution methods based on block diagonal preconditioned
MINRES do exist and perform very well [8, 21]. Here we show that SPMR is competi-
tive with those approaches and is fully scalable too, although the preconditioner solves
are slightly more computationally costly. Further connections to existing solvers such
as PP-MINRES [17] may be apparent.

9. Concluding Remarks. The promise of the SPMR family is in it being a
customized solver for saddle-point systems, with a monotonic and short recurrence
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version for the nonsymmetric case. It is significant that for the SC version, as op-
posed to other solvers, we effectively avoid squaring the condition number the Schur
complement while implicitly forming it. It is also notable that convergence is very
rapid when the singular values of the Schur complement are clustered.

SPMR on its various versions offers a novel simultaneous bidiagonalization pro-
cedure, and proves competitive with other solvers in a variety of scenarios, as we have
demonstrated in our numerical experiments.

We would also like to offer some comments on inexact matrix-vector products.
Considerable work has been done in the field of inexact Krylov methods, such as in
[14, 18, 29, 31]. It would be beneficial to be able to use inexact A-solves (for SPMR-SC
or SPQMR-SC) or inexact null-space projections (for SPMR-NS or SPQMR-NS) by us-
ing this theory. Although previous work is concerned primarily with methods based
on the Arnoldi or Lanczos process [18, 29, 31], or the Golub-Kahan process [14], it
should be possible to extend this work to SIMBA and SIMBO. The main disadvan-
tage is that either short-recurrence methods become long-recurrence methods when
inexact matrix-vector products are introduced as in [14], or the tolerance for how
inexact the products must be made tighter [31]. Even if the methods are forced to
be long-recurrence, if the iteration cost is dominated by the A-solves or null-space
projects rather than reorthogonalization, investigating the use of inexactness would
be advantageous, and the topic of future research.

Finally, it may be desirable to explore applying SPMR to the important class of
regularized saddle-point systems.

A MATLAB version of our code is available at https://github.com/restrin/
LinearSystemSolvers.
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