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Abstract. For positive definite and semidefinite consistent Ax‹ “ b, we use the Gauss-Radau3
approach of Golub and Meurant (1997) to obtain an upper bound on the error }x‹ ´ xL

k }2 for4
SYMMLQ iterates, assuming exact arithmetic. Such a bound, computable in constant time per5
iteration, was not previously available. We show that the CG error }x‹ ´ xC

k }2 is always smaller,6
and can also be bounded in constant time per iteration. Our approach is computationally cheaper7
than other bounds or estimates of the CG error in the literature. As with other approaches using8
Gauss-Radau quadrature, we require a positive lower bound on the smallest nonzero eigenvalue of9
A. For indefinite A, we obtain an estimate of }x‹ ´ xL

k }2. Numerical experiments demonstrate that10
our bounds are remarkably tight for SYMMLQ on positive definite systems, and therefore provide11
reliable bounds for CG.12
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1. Introduction. We consider the conjugate gradient method (CG) (Hestenes16

and Stiefel, 1952) and SYMMLQ (Paige and Saunders, 1975) for solving symmetric17

linear systems Ax “ b, where A P Rnˆn is a sparse symmetric matrix or a fast linear18

operator, i.e., one for which operator-vector products Av can be computed efficiently.19

For x0 “ 0, the kth iterates xCk and xLk formed by CG and SYMMLQ lie in the kth20

Krylov subspace Kk “ span
 

b, Ab, . . . , Ak´1b
(

. In exact arithmetic, Krylov methods21

ensure there is an iteration ` ď n for which xC` “ xL``1 “ x‹, the pseudoinverse (min-22

length) solution, where xLk is defined for iterations k “ 2, . . . , ` ` 1. (Our notation23

differs from that of Paige and Saunders (1975) so that both xLk and xCk are in Kk.)24

When A is positive definite, it is known that the CG error }x‹´x
C
k }2 is monotonic

(Hestenes and Stiefel, 1952, Thm 6:3), although it is not minimized in Kk at each
iteration. The error is also monotonic for SYMMLQ, as it is minimized in a related
space (Saunders, 2016). Empirically, CG typically maintains a smaller error than
SYMMLQ by an order of magnitude, but neither CG nor SYMMLQ provides an obvious
estimate of the error from above. Although the norm of the residual, r “ b ´ Ax “
Apx‹´ xq, can be computed, it may yield loose bounds that depend on the condition
number of A, such as

}x‹ ´ x}2 ď }r}2}A
´1}2 and

}x‹ ´ x}2
}x‹}2

ď
}r}2
}b}2

}A}2}A
´1}2.

Tighter estimates of the CG error using Gauss-Radau quadrature are developed by25

Golub and Meurant (1997), Meurant (1997, 2005), and Frommer, Kahl, Lippert, and26

Rittich (2013).27
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2 RON ESTRIN, DOMINIQUE ORBAN, AND MICHAEL SAUNDERS

Here, we derive cheaply computable estimates of the error for both CG and28

SYMMLQ. Our estimates are upper bounds when A is symmetric positive definite, or29

when A is symmetric positive semidefinite and the system is consistent. As with the30

other approaches using Gauss-Radau quadrature, we require a positive lower bound31

on the smallest nonzero eigenvalue of A.32

In section 2 we provide a brief overview of SYMMLQ. In section 3 we derive upper33

bounds on the SYMMLQ and CG errors when A is positive semidefinite, the system34

is consistent, and under the assumption that computations are carried out in exact35

arithmetic. Section 4 gives recursions for the error bounds. In section 5 we discuss the36

implications when A is indefinite, and in section 6 we discuss parameter choices for37

the error estimates. In section 7 we compare our error bounds with existing bounds38

and estimates. We test the error estimates on problems from the SuiteSparse Matrix39

Collection and compare them against existing approaches in section 8. We discuss40

use of the error bounds in termination criteria in section 9. Note that our derivations41

assume exact computation. The numerical experiments suggest that the theoretical42

upper bounds remain upper bounds in practice until convergence if the eigenvalue43

estimate λest is reasonable. A finite-precision analysis is left for future work.44

1.1. Notation. Matrices are denoted by capital letters A, B, . . . , vectors by45

lowercase letters v, w, . . . , and scalars by Greek letters α, β, γ, . . . , with exceptions46

for c and s, which are used for plane reflections with c2` s2 “ 1. We use ek to denote47

column k of an identity matrix of appropriate size, } ¨ } denotes the Euclidean-norm,48

and }¨}A is the energy norm defined by }u}2A :“ uTAu for A symmetric positive definite49

(SPD). If A is symmetric, λ|min|pAq denotes its smallest eigenvalue in absolute value.50

For brevity, we use the term error to refer to both the error vector and the norm51

of the error, depending on the context.52

We assume that x0 “ 0. If a nonzero starting vector x0 is available, we take53

“Ax‹ “ b” to be A∆x “ b´Ax0 with a zero starting vector, then x‹ “ x0 `∆x.54

2. Overview of CG and SYMMLQ. Both CG and SYMMLQ may be derived55

from the Lanczos (1950) process, which generates orthonormal vectors vk P K` such56

that, at the kth iteration, we have the factorization57

(1) AVk “ VkTk ` βk`1vk`1e
T
k “ Vk`1T k,58

where Vk “ rv1 . . . vks is orthonormal in exact arithmetic,59

Tk “

»

—

—

—

—

–

α1 β2

β2 α2
. . .

. . .
. . . βk
βk αk

fi

ffi

ffi

ffi

ffi

fl

“

„

Tk´1 βkek´1

βke
T
k´1 αk



, and T k “

„

Tk
βk`1e

T
k



.60

In particular, β1v1 “ b with β1 :“ }b}. The iterates xCk “ Vky
C
k and xLk “ Vky

L
k are61

defined by the following subproblems (Saunders, 1995):62

(2) Tky
C
k “ β1e1 and yLk “ arg min

yPRk
}y} such that TTk´1y “ β1e1.63

For reference, the CG iterates are defined by Hestenes and Stiefel (1952) as64

xCk “ arg min
xPKk

}x‹ ´ x}A,65

66
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EUCLIDEAN ERROR BOUNDS FOR SYMMLQ AND CG 3

and the SYMMLQ points are characterized (Fischer, 1996; Saunders, 2016) by67

xLk “ arg min
xPKk

}x} such that b´Ax K Kk´168

“ arg min
xPAKk´1

}x‹ ´ x}, with AKk´1 “ span
 

Ab,A2b, . . . , Ak´1b
(

.69

70

When A is singular but Ax “ b is consistent, Krylov subspace methods identify71

the same (minimum-norm) solution, as explained in the following proposition.72

Proposition 1. Assume symmetric A is singular but Ax “ b is consistent. Let73

x‹ be the solution produced by a Krylov subspace method for solving Ax‹ “ b; that is,74

x‹ P K` for some `. Then x‹ is the unique solution to75

(3) min }x} subject to Ax “ b.76

Proof. First note that necessary and sufficient conditions for x‹ to solve (3) are77

that Ax‹ “ b and x‹ P rangepAq. Since Ax “ b is consistent, b P rangepAq, and so the78

Krylov subspace is contained in rangepAq, implying that x‹ P Kk Ď rangepAq. Since79

Ax‹ “ b and x‹ P rangepAq, it must be the solution to (3).80

Proposition 1 implies that CG and SYMMLQ will identify the same solution to81

Ax “ b.82

2.1. The SYMMLQ iterates. We provide some key properties of SYMMLQ83

and describe some of the quantities that are computed at the kth iteration. Many of84

the factorizations are reused and modified to obtain estimates of the SYMMLQ and85

CG error. A more detailed treatment is given by Paige and Saunders (1975), from86

which we derive most of the notation (with minor differences).87

To obtain xLk , we compute the LQ factorization Tk´1Q
T
k´1“

sLk´1, where Qk´188

is orthogonal and89

L̄k´1 “

»

—

—

—

—

—

–

γ1

δ2 γ2

ε3 δ3 γ3

. . .
. . .

. . .

εk´1 δk´1 γ̄k´1

fi

ffi

ffi

ffi

ffi

ffi

fl

.90

Note that the diagonal entries of L̄k´1 are γj for j “ 1, . . . , k ´ 2, and the last entry91

is γ̄k´1. A single 2ˆ2 reflection is applied on the right to obtain TTk´1Q
T
k “ rLk´1 0s,92

so that Lk´1 differs from L̄k´1 only in the last diagonal entry, which becomes γk´1.93

The reflection is constructed so that94
»

–

γ̄k´1 βk
δ̄k αk
0 βk`1

fi

fl

„

ck sk
sk ´ck



“

»

–

γk´1 0
δk γ̄k
εk`1 δ̄k`1

fi

fl .95

The first iteration begins with k “ 2 (because SYMMLQ iterates are defined only for96

k ě 2), and γ̄1 “ α1 and δ̄2 “ β2. For k ě 2, define zk´1 “
“

ζ1 . . . ζk´1

‰

T as the97

solution to Lk´1zk´1 “ β1e1. Note that yLk “ QTk

„

zk´1

0



solves (2), so that98

(4) xLk “ Vky
L
k “ VkQ

T
k

„

zk´1

0



“ ĎWk

„

zk´1

0



“Wk´1zk´199

with the orthogonal matrix ĎWk “ VkQ
T
k “

“

w1 . . . wk´1 w̄k
‰

“
“

Wk´1 w̄k
‰

.100

Paige and Saunders (1975) establish the following results.101
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4 RON ESTRIN, DOMINIQUE ORBAN, AND MICHAEL SAUNDERS

Lemma 2. The SYMMLQ iterates xLk satisfy the following properties:102

1. xLk “ xLk´1` ζk´1wk´1 P Kk, with wk´1 K xLk´1. Furthermore, }xLk } “ }zk´1}103

and is monotonically increasing.104

2. Since xLk is updated along orthogonal directions, }x‹ ´ x
L
k }

2 “ }x‹}
2 ´ }xLk }

2105

is monotonically decreasing.106

3. It is possible to transfer to the CG iterate via the update xCk “ xLk ` ζ̄kw̄k,107

where ζ̄k “ ζk{ck`1 and w̄k K Kk are byproducts of the SYMMLQ iteration.108

Note that }xCk }
2 “ }xLk }

2 ` ζ̄2
k .109

3. Upper bounds on the error when A is semidefinite. In this section,110

we derive an upper bound on the error in SYMMLQ and build upon it to derive an111

upper bound for CG. As with other Gauss-Radau based approaches, we assume the112

availability of a non-zero underestimate to the smallest non-zero eigenvalue of A.113

We assume that A is positive semidefinite with rank r ď n, but that Ax “ b is con-114

sistent. The situation where A is SPD is simply a special case. Let the spectrum of A115

be ordered as 0 “ λn “ ¨ ¨ ¨ “ λr`1 ă λr ď ¨ ¨ ¨ ď λ1, and consider an underestimate of116

the smallest nonzero eigenvalue λest P p0, λrq. Under the above assumption, SYMMLQ117

and CG identify the pseudoinverse solution x‹ “ A:b “ arg minxt}x} | Ax “ bu. The118

Rayleigh-Ritz theorem states that119

λr “ mintvTAv | v P RangepAq, }v} “ 1u.120

In addition, for any u P Rk with }u} “ 1, Vku P RangepAq because each vi P RangepAq,121

and }Vku} “ 1. Then, each Tk is positive definite because uTTku “ pVkuq
TApVkuq ě122

λr ą 0. Because each xLk and xCk lies in RangepAq by definition, the SYMMLQ and CG123

iterations occur as if they were applied to the symmetric and positive definite system124

consisting in the restriction of Ax “ b to RangepAq.125

3.1. Existing error estimates for Krylov subspace methods. There has126

been significant interest in estimating the A-norm of the CG error, the history of127

which is detailed by Strakoš and Tichý (2002). The Euclidean-norm has received less128

attention as it is more difficult to estimate for CG, although it has been studied by129

Strakoš and Tichý (2002), Golub and Meurant (1997), Meurant (1997, 2005), and130

Frommer et al. (2013). Although estimates for the CG error are derived by Meurant131

(2005), they are not proved to be upper bounds, while those of Frommer et al. (2013)132

are upper bounds but can be more expensive in ill-conditioned cases in order to133

achieve improved accuracy (by increasing d in section 7). The only Euclidean-norm134

SYMMLQ error upper bounds we are aware of are those of Szyld and Widlund (1993),135

who provide a pessimistic geometric error decay rate.136

The strategy behind estimating error norms is to recognize the error and related137

quantities as quadratic forms rTfpAqr evaluated at A for a certain function f (for138

example, fpξq “ ξ´2 and r “ b ´ Ax) and seek estimates of this quadratic form. If139

A “ PΛPT is the eigenvalue decomposition of A, pi is the i-th column of P , and λi140

is the i-th largest eigenvalue, then the quadratic form can be expressed as141

(5) bTfpAqb :“ bTPfpΛqPT b “
n
ÿ

i“1

fpλiqφ
2
i , φi :“ pTi b, i “ 1, . . . , n.142

The connection between such quadratic forms and their approximation via Gaus-143

sian quadrature is most notably studied by Dahlquist, Eisenstat, and Golub (1972),144

Dahlquist, Golub, and Nash (1979), and Golub and Meurant (1994, 1997), who show145

it is possible to derive upper and lower bounds using the Lanczos process on pA, bq.146

We follow this strategy to bound the SYMMLQ and CG errors.147
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3.2. Upper bounds on the SYMMLQ error. According to (4) and result 2148

of Lemma 2, we have149

(6) }x‹ ´ x
L
k }

2 “ }x‹}
2 ´ }xLk }

2 “ }x‹}
2 ´ }zk´1}

2.150

Thus it is sufficient to find an upper bound on }x‹}
2 “ bTA´2b, assuming temporarily151

for the clarity of exposition that A is SPD. In this section, we show how to obtain152

such a bound at the cost of a few scalar operations per iteration.153

We are interested in the choices fpξq “ ξ´2 (with ξ “ A) as well as fpξq “ ξ´1154

(with ξ “ A2). Although these appear to be exactly the same, the estimation proce-155

dure and convergence properties of the estimates are different when A is indefinite,156

since A2 is guaranteed to be positive semidefinite.157

When A is only semidefinite, we need to estimate the quadratric form }x‹}
2
“158

bT
`

A:
˘2
b “ bTfpAqb, where159

fpξq “

#

ξ´2 ξ ą 0,

0 ξ “ 0.
(7)160

161

From the eigensystem A “ PΛPT , this quadratic form is expressible as162

}x‹}
2
“

r
ÿ

i“1

λ´2
i φ2

i , φi “ pTi b, i “ 1, . . . , r.163

164

Compared to (5), the only difference is that we now compute the sum over the nonzero165

eigenvalues.166

We do not repeat the derivation of using Gauss-Radau quadrature to obtain an167

upper bound on such quadratic forms. The details can be found in (Golub and168

Meurant, 1994, 2009; Meurant, 2006). The following key theorem is the basis of our169

approach.170

Theorem 3. Let A be positive semidefinite, Ax “ b be consistent, f : p0, 8q Ñ171

R, and let the derivatives of f satisfy f p2m`1qpξq ă 0 for all ξ P pλr, λmaxpAqq and172

all integers m ě 0. Fix λest P p0, λrq. Let Tk be generated by k steps of the Lanczos173

process on pA, bq and let174

rTk :“

„

Tk´1 βkek´1

βke
T
k´1 ωk



,175

where ωk is chosen such that λminp rTkq “ λest. Then176

bTfpAqb ď }b}2eT1 fp
rTkqe1.177

Proof. The result follows from (Golub and Meurant, 1994, Theorem 3.2) and the178

section preceding it, as well as (Golub and Meurant, 1994, Theorem 3.4), although179

those results only consider the case where A is SPD.180

Because Tk´1 “ V Tk´1AVk´1 in exact arithmetic, the Poincaré separation theorem181

ensures that λr ď λminpTk´1q ď λmaxpTk´1q ď λmaxpAq for all k. On the other hand,182

the Cauchy interlace theorem guarantees that λminp rTkq ă λminpTk´1q. As Theorem 3183

announces, because λr ą 0, it is possible to select ωk to achieve a prescribed λminp rTkq.184

The objective is to compute ωk in rTk, then efficiently evaluate the quadratic form.185

Golub and Meurant (1994) show that ωk “ λest ` ηk´1, where ηk´1 is obtained from186

the last entry of the solution of the system187

(8) pTk´1 ´ λestIquk´1 “ β2
kek´1.188
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6 RON ESTRIN, DOMINIQUE ORBAN, AND MICHAEL SAUNDERS

To compute uk´1, we take the QR factorization of Tk´1 ´ λestI analogous to the LQ189

factorization of TTk´1 in SYMMLQ. This differs from (Orban and Arioli, 2017), where190

a Cholesky factorization is used, but QR factorization allows us to solve the indefinite191

system using a stable factorization. It begins with the 2ˆ2 reflection192

«

c
pωq
1 s

pωq
1

s
pωq
1 ´c

pωq
1

ff

„

α1 ´ λest β2

β2 α2 ´ λest β3



“

„

ρ1 σ2 τ3
ρ̄2 σ̄3



,193

194

and proceeds with reflections defined by195

«

c
pωq
j s

pωq
j

s
pωq
j ´c

pωq
j

ff

„

ρ̄j σ̄j`1

βj`1 αj`1 ´ λest βj`2



“

„

ρj σj`1 τj`2

ρ̄j`1 σ̄j`2



.196

197

Putting the QR factorization together, we have198

Tk´1 ´ λestI “

»

—

—

—

–

ˆ ˆ ¨ ¨ ¨ ˆ

ˆ ˆ ˆ

. . .
. . .

...

s
pωq
k´2 ´c

pωq
k´2

fi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

—

–

ρ1 σ2 τ3

ρ2 σ3
. . .

ρ3
. . . τk´1

. . . σk´1

ρ̄k´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,199

200

where ˆ is a placeholder for entries we are not interested in. We do not need to201

compute the QR factorization fully as we require only the scalars s
pωq
k´2, c

pωq
k´2, and202

ρ̄k´1 at the kth iteration. The relevant recurrence relations are203

ρ̄1 “ α1 ´ λest,204

σ̄2 “ β2, c
pωq
0 “ ´1,205

ρ1 “

b

ρ̄2
1 ` β

2
2 , c

pωq
1 “

α1 ´ λest

ρ1
, s

pωq
1 “

β2

ρ1
;206

for k ě 2:207

ρ̄k “ s
pωq
k´1σ̄k ´ c

pωq
k´1pαk ´ λestq,208

σ̄k`1 “ ´c
pωq
k´1βk`1, τk “ s

pωq
k´2βk,209

ρk “
b

ρ̄2
k ` β

2
k`1, c

pωq
k “

ρ̄k
ρk
, s

pωq
k “

βk`1

ρk
.210

211

From the QR factorization of (8), we see that212

»

—

—

—

—

—

—

—

—

–

ρ1 σ2 τ3

ρ2 σ3

. . .

ρ3
. . . τk´1

. . . σk´1

ρ̄k´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

–

ˆ

...
ˆ

ηk´1

fi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

–

ˆ ˆ

ˆ ˆ
. . .

...
. . . s

pωq
k´2

ˆ ¨ ¨ ¨ ¨ ¨ ¨ ´c
pωq
k´2

fi

ffi

ffi

ffi

ffi

ffi

fl

β2
kek´1 “

»

—

—

—

—

—

—

–

0
...
0

β2
ks
pωq
k´2

´β2
kc
pωq
k´2

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,213

214

and therefore ηk´1 “ ´β
2
kc
pωq
k´2{ρ̄k´1, with ωk “ λest ` ηk´1.215

This manuscript is for review purposes only.



EUCLIDEAN ERROR BOUNDS FOR SYMMLQ AND CG 7

We now describe how to compute β2
1e
T
1
rT´2
k e1 efficiently. Note that if we take the216

LQ factorization of rTk “ rLk rQk, then by symmetry of rTk,217

β2
1e
T
1
rT´2
k e1 “ β2

1e
T
1

`

rLk rQk
˘´T `

rLk rQk
˘´1

e1218

“ β2
1e
T
1
rL´Tk

rL´1
k e1 “ }β1

rL´1
k e1}

2
219

“ }rzk}
2
,(9)220221

where rLkrzk “ β1e1. Because rTk differs from Tk only in the pk, kq entry, we have222

rLk “

„

Lk´1 0
εke

T
k´2 ` ψke

T
k´1 ω̄k



, where

„

ck sk
sk ´ck

 „

δ̄k
ωk



“

„

ψk
ω̄k



,223

where εk comes from the LQ factorization of Tk. The vector rzk is closely related to224

zk. Indeed Lk´1zk´1 “ β1e1, and therefore225

(10) rzk “

„

zk´1

rζk



, rζk “ ´
1

ω̄k
pεkζk´2 ` ψkζk´1q .226

Theorem 3 (with f defined in (7)) and (9) imply that }x‹}
2
ď }rzk}

2
so that (6) yields227

(11) }x‹ ´ x
L
k }

2 “ }x‹}
2 ´ }xLk }

2 ď }rzk}
2 ´ }zk´1}

2 “ pεLk q
2,228

where we define229

(12) εLk :“ |rζk|.230

Thus, with only a few extra floating-point operations per iteration we can compute231

an upper bound εLk on the SYMMLQ error in the Euclidean-norm.232

Note that this approach can be applied when a positive definite preconditioner233

M « A is used. The preconditioner changes the Lanczos decomposition, but all234

remaining computations carry through as above. We obtain an estimate of the error235

in the norm defined by the preconditioner, namely }x˚ ´ xk}M .236

3.3. Upper bounds on the CG error. We now use the error bound derived237

in the previous section to obtain an upper bound on the CG error in the Euclidean238

norm. We first establish that the CG error is always lower than that of SYMMLQ for239

A positive semidefinite and Ax “ b consistent. Although the result yields the trivial240

upper bound (12), it also allows us to identify an improved bound. Define the kth241

CG direction as pk with step length αCk ą 0, so that xCk “
řk
j“1 α

C
j pj .242

Lemma 4 (Hestenes and Stiefel, 1952, Theorem 5:3). The CG search directions243

satisfy pTi pj ě 0 for all i, j.244

The following lemma is also useful in our analysis.245

Lemma 5. For 1 ď k ď ` and 0 ď d1 ď d2 ď `´ k,246

pxCk`d2q
TxCk ě px

C
k`d1q

TxCk ě }x
C
k }

2, and in particular, xT‹ x
C
k ě }x

C
k }

2.247

Proof. Because αCi ą 0, Lemma 4 yields248

pxk`d2q
TxCk “

ˆ

xCk `
k`d2
ÿ

i“k`1

αCi pi

˙T

xCk “
›

›xCk
›

›

2
`

k`d2
ÿ

i“k`1

k
ÿ

j“1

αCi α
C
j p

T
i pj249

ě
›

›xCk
›

›

2
`

k`d1
ÿ

i“k`1

k
ÿ

j“1

αCi α
C
j p

T
i pj250

ě
›

›xCk
›

›

2
.(13)251252
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We now relate the Euclidean-norm errors of SYMMLQ and CG.253

Theorem 6. Let A be positive semidefinite and Ax “ b be consistent and let x‹254

be the solution identified by both CG and SYMMLQ by virtue of Proposition 1. The255

following hold in exact arithmetic for all 2 ď k ď `:256

}xLk } ď }x
C
k },(14)257

}x‹ ´ x
C
k } ď }x‹ ´ x

L
k }.(15)258259

Proof. Result 3 of Lemma 2 proves (14), and this with Lemma 5 implies260

›

›xLk
›

›

2
`
›

›xCk
›

›

2
ď 2

›

›xCk
›

›

2
ď 2xT‹ x

C
k .261262

Rearranging and adding }x‹}
2 to both sides gives263

}x‹}
2
´ 2xT‹ x

C
k `

›

›xCk
›

›

2
ď }x‹}

2
´
›

›xLk
›

›

2
.264265

By factoring the left and using result 2 of Lemma 2 on the right, we obtain (15).266

Although the proof of Theorem 6 assumes exact arithmetic, we have observed267

empirically that the result holds until the error in xLk plateaus at convergence.268

Theorem 6 immediately establishes the trivial bound269

(16)
›

›x‹ ´ x
C
k

›

› ď
›

›x‹ ´ x
L
k

›

› ď εLk ,270

which provides an upper bound on the Euclidean-norm CG error, in contrast to the271

estimates of Meurant (2005). We can improve bound (16) using a few observations.272

From Lemma 5,273

(17) θk :“ xT‹ x
C
k ´ }x

C
k }

2 ě 0.274

Hence from part 3 of Lemma 2275

›

›x‹ ´ x
C
k

›

›

2
“ }x‹}

2
´ 2xT‹ x

C
k `

›

›xCk
›

›

2
276

“ }x‹}
2
´ 2θk ´

›

›xCk
›

›

2
277

“ }x‹}
2
´ 2θk ´

›

›xLk
›

›

2
´ ζ̄2

k ,278279

and since
›

›x‹ ´ x
L
k

›

› ď εLk “ |
rζk| it follows that280

›

›x‹ ´ x
C
k

›

›

2
“
›

›x‹ ´ x
L
k

›

›

2
´ ζ̄2

k ´ 2θk281

ď rζ2
k ´ ζ̄

2
k ´ 2θk(18)282

ď rζ2
k ´ ζ̄

2
k .(19)283284

Since ζ̄k is readily available as part of the SYMMLQ iteration, (19) is an improvement285

upon the bound (16). Unfortunately, bound (18) is not computable because x‹ is286

unavailable. We define287

(20) εCk :“

b

rζ2
k ´ ζ̄

2
k ď

ˇ

ˇ

ˇ

rζk

ˇ

ˇ

ˇ
“ εLk288

as an upper bound on the error of the kth CG iterate.289
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From (13), we could further improve the error estimate by approximating θk290

from below by introducing a delay, implemented using the sliding-window approach291

originally appearing in Golub and Strakǒs (1994) (stabilized by Golub and Meurant292

(1997) and used by Meurant (2005) and Orban and Arioli (2017)). Given Lemma 5,293

we define an approximation of (17) as294

θ
pdq
k :“ pxCk`dq

TxCk ´ }x
C
k }

2 ď θk pd ą 0q,295

noting that 0 ď θ
p1q
k ď ¨ ¨ ¨ ď θ

p`´kq
k “ θk.296

We now describe how to compute θ
pdq
k without storing the iterates xCk , . . . , x

C
k`d297

explicitly. Recalling that xCk “ xLk ` ζ̄kw̄k “
řk´1
i“1 ζiwi ` ζ̄kw̄k, we have298

θ
pdq
k “

`

xLk ` ζ̄kw̄k
˘T `

xLk`d ` ζ̄k`dw̄k`d
˘

´
`

}xLk }
2 ` ζ̄2

k

˘

299

“ }xLk }
2 ` ζ̄kw̄

T
k x

L
k`d ` ζ̄k ζ̄k`dw̄

T
k w̄k`d ´

`

}xLk }
2 ` ζ̄2

k

˘

300

“ ζ̄k

k`d´1
ÿ

i“k

ζiw̄
T
k wi ` ζ̄k ζ̄k`dw̄

T
k w̄k`d ´ ζ̄

2
k ,301

302

where we use the fact that wTi wj “ 0 for i ‰ j and w̄Ti wj “ 0 for j ă i. We now use303

the fact that304

w̄Tk wi “ ci`1

i
ź

j“k`1

sj and w̄Tk w̄i “
i
ź

j“k`1

sj for i ě k,305

so that306

θ
pdq
k “ ζ̄k

k`d´1
ÿ

i“k

˜

ζici`1

i
ź

j“k`1

sj

¸

` ζ̄k ζ̄k`d

k`d
ź

j“k`1

sj ´ ζ̄
2
k .307

We can compute θ
pdq
k in Opdq flops and Opdq storage by maintaining d partial products308

of the form
śi
j“k`1 sj for k` 1 ď i ď k` d. At the next iteration we can divide each309

partial product by sk`1 and multiply the last one by sk`d to obtain the necessary310

partial products for iteration k ` 1.311

With the above expression we can improve (19) to312

(21) }x‹ ´ x
C
k }

2 ď
`

εCk
˘2
´ 2θ

pdq
k .313

This improved bound is only noticeable when λest is a close estimate to λmin. Oth-314

erwise, the difference between the εCk and }x‹ ´ x
C
k } is dominated by the error in the315

Gauss-Radau quadrature (the difference between εLk and }x‹ ´ x
L
k }).316

It is not necessary to implement CG via the transfer point from SYMMLQ in317

order to compute these error bounds because only tαk, βku from the Lanczos process318

are required. These can be recovered from the classic Hestenes and Stiefel (1952)319

implementation of CG using equations provided by Meurant (2005).320

For positive semidefinite A, we have derived upper bounds on the SYMMLQ and321

CG errors when Ax “ b is consistent. Only a few extra scalar operations are needed322

per iteration, and Op1q extra memory.323

4. Complete algorithm. Algorithm 1 provides the complete algorithm to com-324

pute the error bounds εLk and εCk , given tαk, βku from the Lanczos process. Although325

it did not make a difference in our numerical experiments, it may be safer in practice326

to compute reflections using a variant of (Golub and Van Loan, 2013, §5.1.8).327
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10 RON ESTRIN, DOMINIQUE ORBAN, AND MICHAEL SAUNDERS

Algorithm 1 SYMMLQ with CG error estimation

1: Input: A, b, and λest such that λest ă λminpAq.
2: Obtain α1, β1, β2 of Lanzcos process on pA, bq
3: γ̄1 “ α1, δ̄2 “ β2, ε1 “ ε2 “ 0 Ź begin QR of L̄k
4: ρ̄1 “ α1 ´ λest, σ̄2 “ β2, ρ1 “

a

ρ̄2
1 ` β

2
2 Ź begin QR of (8)

5: c
pωq
0 “ ´1, c

pωq
1 “ pα1 ´ λestq{ρ1, s

pωq
1 “ β2{ρ1

6: ζ0 “ 0, ζ̄1 “ β1{γ̄1 Ź initialize remaining variables
7: for k “ 2, 3, . . . do

8: γk´1 “

b

γ̄2
k´1 ` β

2
k

9: ck “ γ̄k´1{γk´1, sk “ βk{γk´1

10: Obtain αk, βk`1 from Lanczos process on pA, bq
11: δk “ δ̄kck ` αksk, γ̄k “ δ̄ksk ´ αkck Ź continue QR of L̄k
12: εk`1 “ βk`1sk, δ̄k`1 “ ´βk`1ck
13: ζk´1 “ ζ̄k´1ck Ź forward substitution
14: ζ̄k “ ´pεkζk´2 ` δkζk´1q{γ̄k

15: ηk´1 “ ´β
2
kc
pωq
k´2{ρ̄k´1 Ź forward substitution on (8)

16: ωk “ λest ` ηk´1

17: ψk “ ck δ̄k ` skωk, ω̄k “ sk δ̄k ´ ckωk
18: εLk “ |pεkζk´2 ` ψkζk´1q{ω̄k| Ź compute error bounds

19: εCk “
`

pεLk q
2 ´ ζ̄2

k

˘
1
2

20: ρ̄k “ s
pωq
k´1σ̄k ´ c

pωq
k´1pαk ´ λestq Ź continue QR of (8)

21: σ̄k`1 “ ´c
pωq
k´1βk`1, ρk “

b

ρ̄2
k ` β

2
k`1

22: c
pωq
k “ ρ̄k{ρk, s

pωq
k “ βk`1{ρk

23: end for

5. Estimation of }x‹ ´ x
L
k } with A indefinite. We now focus on the SYMMLQ328

error when A is indefinite. Theorem 3 no longer applies, and so β2
1e
T
1
rT´2
k e1 is only329

an estimate of }x‹} rather than an upper bound.330

There are two approaches. The first is to continue as in subsection 3.2 and accept331

εLk as an estimate of the error rather than an upper bound. Alternatively we can332

treat }x‹}
2 “ bTpA2q:b as a quadratic form in A2 rather than A. (Recall that for333

real symmetric A, pA2q: “ pA:q2.) We formulate the problem as upper bounding the334

energy norm }x‹} “ }b}B: with B “ A2. Such computation is akin to computing the335

energy norm error for CG using Gauss-Radau quadrature, which has been studied by336

Golub and Meurant (1997) and others. The main difficulty is that it requires applying337

the Lanczos process to A2 and b, which means two applications of A per iteration of338

SYMMLQ. Although this theoretically guarantees that we obtain an upper bound on339

}x‹} (and therefore an upper bound on the error), roundoff error can diminish the340

quality of the estimation.341

With these ideas in mind, we consider the procedure outlined in subsection 3.2,342

treating bTpA2q:b as a quadratic form in A to estimate the error. In numerical ex-343

periments we observe that the estimate often remains an upper bound, even as the344

iterates converge to the solution. It is possible to loosen the error estimate by choosing345

a smaller value for λest to encourage the estimate to remain an upper bound; however,346

without knowing λ|min |, this may not be a practical solution. This is also illustrated347

in the numerical experiments.348
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Note that with A indefinite, λest should be chosen between zero and the eigenvalue349

closest to zero (keeping the sign of that eigenvalue). This is the only difference in the350

computation of εLk . There may be iterations where Tk´1 ´ λestI becomes singular,351

and it may not be possible to compute εLk for that iteration, but the QR factorization352

of Tk ´ λestI will remain computable at future iterations.353

6. The choice of λest. A reasonably tight underestimate of λest is required for354

approaches using Gauss-Radau quadrature, such as for the error estimates proposed by355

Meurant (1997) and Frommer et al. (2013). The quality of our error bounds is directly356

dependent on the quality of the Gauss-Radau quadrature, which in turn depends on357

the quality of the eigenvalue estimate. Meurant and Tichý (2015) investigated the358

effect of λest on the quality of Gauss-Radau quadrature for the CG A-norm error.359

If λ|min| :“ arg minλPΛpAq |λ| is known, one should choose λest “ p1´ εqλ|min| with360

ε ! 1. In the experiments below, we usually use ε “ 10´10. Choosing λest slightly361

closer to zero alleviates numerical stability issues in computing ωk with a near-singular362

Tk ´ λestI. This also applies when A is indefinite.363

One example where it is trivial to obtain an underestimate of the smallest eigen-364

value is for shifted linear systems pA ` δIqx “ b with A SPD and δ ą 0, where the365

choice λest “ δ may give good error estimates if A is close to singularity. This is of366

interest for regularized least-squares problems pATA ` δ2Iqx “ ATb and is exploited367

by Estrin, Orban, and Saunders (2016).368

When λ|min| is not known, the choice of λest becomes application-specific. It369

may be possible to estimate the smallest eigenvalue as the iterations progress, similar370

to Frommer et al. (2013), although this is the subject of ongoing research. If no371

information is known about the spectrum of A, Gauss-Radau quadrature approaches372

such as the one presented in this paper may not be practical.373

7. Previous error estimates. As discussed in subsection 3.1, there are other374

approaches to estimating the error in the iterates of Krylov subspace methods, par-375

ticularly for CG. In this section we provide a brief overview of the approaches taken376

by Brezinski (1999), Meurant (2005), and Frommer et al. (2013) as applied to CG,377

followed by some numerical experiments comparing the approaches. Only the error378

estimate by Brezinski (1999) applies to SYMMLQ as well. We include this in the379

numerical experiments.380

Brezinski (1999) describes several estimates of the error for nonsingular square381

systems, including382

(22) }x‹ ´ xk} «
}rk}

2

}Ark}
, rk “ b´Axk383

(see also Auchmuty (1992)). This estimate is simple to implement, but requires an384

extra product Ark each iteration. The estimate can be made into an upper bound by385

multiplying it by the condition number of A, or an upper bound thereof, assuming386

the latter is known ahead of time, although this considerably loosens the estimate.387

Thus, such conversion to an upper bound is only possible when A is nonsingular.388

Meurant (2005) uses the relation389

(23) }x‹´ x
C
k }

2 “ }b}2
`

eT1 T
´2
n e1 ´ e

T
1 T

´2
k e1

˘

` p´1qkβk`1}x‹´ x
C
k }

2
A

}b}

}rCk }
eTk T

´2
k e1390

to relate the A-norm error to that of the Euclidean error for CG iterates. The first term391

can be approximated by introducing a delay d and replacing eT1 T
´2
n e1 by eT1 T

´2
k`de1.392
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12 RON ESTRIN, DOMINIQUE ORBAN, AND MICHAEL SAUNDERS

Table 1: Cost of computing an error estimate for CG using various methods, where d
is the window size for methods using a delay (denoted by ˚). The right column refers
to whether the method guarantees an upper bound in exact arithmetic.

Cost per iteration Storage Upper bound
Brezinski (1999) Opn` nnzpAqq Op1q Yes, if scaled by κpAq
Meurant (2005)˚ Op1q Opdq No
Frommer et al. (2013)˚ Opd2q Opdq Yes
This paper, bound (20) Op1q Op1q Yes
This paper, bound (21)˚ Opdq Opdq Yes

The A-norm error can be estimated via Gauss quadrature as described by Golub and393

Meurant (1997), and the remaining terms by updating a QR factorization of Tk, so394

that the total cost is only Op1q flops per iteration.395

Frommer et al. (2013) use the fact that rCk “ }r
C
k }vk`1, where vk`1 is the pk`1qth396

Lanczos vector, and so397

(24) }x‹ ´ x
C
k }

2 “ }rCk }
2vTk`1A

´2vk`1.398

The right-hand side of (24) is upper-bounded using Gauss-Radau quadrature. Rather399

than restarting the Lanczos process on A using vk`1 as the initial vector at each CG400

iteration, they cleverly perform the Lanczos process on the lower 2d ˆ 2d submatrix401

of Tk`d`1 using ed`1 as the starting vector, thus recovering the same estimate. The402

restarted Lanczos factorization requires Opd2q flops at each iteration.403

In Table 1 we summarize the costs of the various error estimates for CG and say404

whether the estimate can be shown to be an upper bound in exact arithmetic.405

8. Numerical experiments.406

8.1. Comparison with previous estimates. We give some numerical exam-407

ples comparing the various error estimation procedures for CG and SYMMLQ, using408

SPD matrices from the SuiteSparse Matrix Collection (Davis and Hu, 2011) and Mat-409

lab implementations of all error estimates described in section 7. In each experiment,410

we use b “ 1{
?
n and compute x‹ “ Azb via Matlab. The solvers terminate when411

}rk} { }b} ď 10´10. For estimates using a delay d, we report the estimated error at412

iteration k using information obtained during iterations k, k` 1, . . . , k` d. Estimates413

requiring bounds on eigenvalues use p1 ´ 10´10qλminpAq for the lower bound and414

p1` 10´10qλmaxpAq for the upper bound. (Further experiments in subsection 8.2 use415

a less accurate estimate of λminpAq.) For each approach to estimating the error, we416

plot ε{}x˚ ´ xk}, that is, the ratio of the estimate, ε, to the true error.417

First we compare our SYMMLQ error estimate with that of Brezinski (1999). We418

use the matrix UTEP/Dubcova1 (n “ 16, 129 and κpAq « 103). The ratio of the true419

error to the corresponding bounds are plotted in Figure 1a. We see that our bound is420

close to the true error until xLk attains its maximum accuracy, whereas the Brezinski421

(1999) estimate is a lower bound on the error for the examples in this section; however422

if it is scaled by κpAq then it becomes a loose upper bound.423

We now compare the estimates for CG from (20) and (21) using a well-conditioned424

system (again UTEP/Dubcova1) and an ill-conditioned system (Nasa/nasa4704, n “425

4704 and κpAq « 107). In Figure 1b, we see that all estimates do fairly well, as they426

are off by at most one or two orders of magnitude. Estimate (20) performs nearly427
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Fig. 1: εk{ }x‹ ´ xk} for SPD system UTEP/Dubcova1 using SYMMLQ and CG, where
εk is the error bound for either SYMMLQ or CG.
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(a) d “ 10
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(b) d “ 100

Fig. 2: εCk {
›

›x‹ ´ x
C
k

›

› for SPD system Nasa/nasa4704. Delays d “ 10 and 100 are
used for estimates that take advantage of them.

as well as those of Meurant (2005) and Frommer et al. (2013) when d “ 10, until428

a divergence occurs near iteration 70. The improved estimate (21) appears tightest429

until that same divergence occurs.430

Next, we compare against the estimates of Meurant (2005) and Frommer et al.431

(2013) on Nasa/nasa4704 using d “ 10 in Figure 2a and d “ 100 in Figure 2b. We432

see that for d “ 10, the (Meurant, 2005) estimate is not an upper bound, while that433

of Frommer et al. (2013) is looser than ours. The situation is improved for the other434

estimates with d “ 100, where (20) and those of (Meurant, 2005; Frommer et al.,435

2013) are fairly similar, but the Meurant (2005) estimate is still not an upper bound,436

and the estimate of Frommer et al. (2013) is more costly for such d. We also note437

that in this case, increasing d does not noticeably improve (21) compared to (20).438

For CG, (20) is the cheapest and in exact arithmetic is guaranteed to be an upper439

bound. At the same time, it is not necessarily the tightest estimate, and the estimate440

of Frommer et al. (2013) has the advantage of improved accuracy of the error estimate441
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Fig. 3: εLk p¨q{
›

›x‹ ´ x
L
k

›

› for two SPD systems. The Gauss-Radau approach gives upper
bounds, while the delay gives lower bounds.

with increased window size d (moreso than (21)), although at a higher computational442

cost and it requires computing d iterations into the future. In some cases, such as443

Figure 2a, a good estimate that is not guaranteed to be a bound may more useful,444

but without accuracy guarantees it may be difficult to use such estimates within445

termination criteria.446

8.2. Additional SPD experiments. We evaluate the quality of our error447

bounds (12), (20) and (21) on further SPD examples from the SuiteSparse collection.448

Again we solve Ax “ b with b “ 1{
?
n, taking x‹ “ Azb from Matlab and terminating449

when }rk} { }b} ď 10´10. We compute λ|min|pAq, the eigenvalue closest to zero, and450

obtain the error bounds using λest “ µλ|min|pAq, typically with µ “ 1 ´ 10´10 or451

0.1. We also include a lower-bound error estimate using a delay (Hestenes and Stiefel,452

1952; Golub and Strakǒs, 1994). Because SYMMLQ takes orthogonal steps,453

(25)
›

›xLk`d ´ x
L
k

›

›

2
“

k`d´1
ÿ

i“k

ζ2
i ď

ÿ̀

i“k

ζ2
i “

›

›x‹ ´ x
L
k

›

›

2
454

for any d ě 1. By choosing a modest value d “ 5 or 10 and storing the last d455

steplengths ζi, we can compute a lower bound on the error. Note that we can com-456

pute a lower bound via Gauss and Gauss-Radau quadrature with λest ě }A}2. Such457

techniques were used by Arioli (2013), and provide lower bounds comparable to those458

using a delay. We plot ε{}x‹ ´ xk} to investigate the tightness of the bounds.459

In the figure legends, εLk pµq and εCk pµq denote the error bounds for SYMMLQ and460

CG obtained from Gauss-Radau quadrature when λest “ µλ|min|pAq, where 0 ă µ ă 1.461

For SYMMLQ we include the lower-bound error obtained using a delay with d ą 1,462

denoted by εLk pdq.463

For SYMMLQ on Bindel/ted B unscaled (n “ 10605 and κpAq « 1011), the bound464

to error ratios are shown in Figure 3a. For GHS psdef/wathen100 (n “ 30401 and465

κpAq « 103), they are in Figure 3b. When λest approximates λ|min| “ λr well, the466

bound εLk is remarkably tight after an initial lag. We used µ “ 1´ 10´6 for the first467

problem due to A being ill-conditioned (λ|min | « 10´11), and µ “ 1 ´ 10´10 for the468

second problem. Even when λest is a tenth of the true eigenvalue, it appears that469
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Fig. 4: εCk pµq{
›

›x‹ ´ x
C
k

›

› for two SPD systems.

the bound is at most an order of magnitude larger, still outlining the true error from470

above. Only near convergence, εLk may no longer be a bound when the true error471

plateaus. Having the computed bound continue to decrease after convergence is a472

desirable property for termination criteria. The lower bounds εLk pdq oscillate an order473

of magnitude below the true error in Figure 3a, but in Figure 3b, both upper and474

lower bounds soon approximate the true error to within a couple orders of magnitude.475

We now solve the same problems using CG. Figure 4 shows that εCk is a consider-476

ably looser bound on the CG error than εLk is on the SYMMLQ error, although both477

remain true upper bounds until convergence. As with SYMMLQ, if the error stag-478

nates at convergence, the “bound” may continue to decrease. We see that increasing479

d in (21) (when using an accurate estimate of the smallest eigenvalue) improves the480

bound when A is reasonably conditioned, but does not have a large impact for ill-481

conditioned problems. Also, εCk diverges slightly from the true CG error when the482

error is roughly the square-root of the maximum attainable accuracy; in particular, d483

has nearly no noticeable effect past that point. This is probably due to ζ̄k becoming484

an order of magnitude smaller than εLk .485

8.3. Empirical check. To check whether the error bounds behave as upper486

bounds numerically, we ran SYMMLQ and CG on all SuiteSparse matrices of size487

n ď 25000 with κpAq ă 1016, resulting in 140 problems. We used b “ 1{
?
n and488

λest “ p1´ 10´10qλmin or 0.1λmin, and terminated when the estimate εLk , ε
C
k ď 10´10.489

We then counted the number of iterations where εLk ě }x‹ ´ x
L
k } and εCk ě }x‹ ´ x

C
k }490

were satisfied. For λest “ p1´ 10´10qλmin (0.1λmin), 121 (129) problems had εLk and491

εCk behave as upper bounds for all iterations, while for the remaining 19 (11) problems492

we saw a cross-over at convergence similar to Figure 3b, with εLk and εCk continuing493

to decrease once the true error plateaued. Thus empirically our bounds do behave as494

upper bounds until convergence.495

8.4. Effect of λest. We briefly investigate the effect of λest on the tight-496

ness of the error bounds (12) and (20). We use problems UTEP/Dubcova1 and497

Bindel/ted B unscaled again as examples of well- and ill-conditioned systems.498

We observe in Figures 5a and 5c that for SYMMLQ, εLk pµq{}x‹ ´ xLk } « µ´1499

after an initial lag. In the case of Bindel/ted B unscaled, an instability occurs for500
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(c) SYMMLQ on Bindel/ted B unscaled
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(d) CG on Bindel/ted B unscaled

Fig. 5: εkpµq{}xk ´ x‹} when running SYMMLQ and CG on two SPD problems for
using various values of λest “ µλ|min |.

µ “ 1 ´ 10´10 because the smallest eigenvalue is λ|min | « 10´11. The instability is501

remedied by using a slightly larger µ “ 1´ 10´4, which results in an almost identical502

bound, but without the instability.503

For CG in Figures 5b and 5d, we also notice that for µ ď 0.1, the bound loosens504

by a factor of µ but keeps the same shape. The exception is when µ « 1, where the505

bound is fairly tight until a divergence occurs and the bound nearly overlaps with506

the curve for µ “ 0.1. The closer µ is to 1, the later this divergence occurs; however507

when λ|min | is very small (as in Figure 5d), this may result in numerically unstable508

computations. This is because we are implicitly solving against the shifted system509

Tk ´ λestI to compute the bound, which becomes singular as λest approaches λ|min|.510

Meurant and Tichý (2015) observed similar instabilities for CG A-norm error bounds511

when the true error approaches the square root of machine precision.512

8.5. Indefinite A. We now consider indefinite examples PARSEC/Na5 and513

HB/lshp3025 (n “ 5822 and 3025, κpAq « 103 and 104). The former contains few514

negative eigenvalues, while for the latter, nearly half of its spectrum is negative. Fig-515

ure 6a shows that with the negative eigenvalue, (12) is no longer a bound for all516

iterations, and behaves only as an estimate which often dips below the true error.517

However, for many problems, such as for HB/lshp3025 in Figure 6b, we see that the518

error estimate using λ|min| remains an upper bound (until convergence) and tracks519
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Fig. 6: εLk pµq{
›

›x‹ ´ x
L
k

›

› for two indefinite systems. The Gauss-Radau approach no
longer guarantees an upper bound, but works in some problems. The delay continues
to provide a lower bound.

the true error to nearly an order of magnitude. Underestimation of λ|min| loosens the520

bound, but in the case of both problems here, keeps (12) an upper bound to the true521

error, although this is again heuristic.522

9. Finite-precision considerations and termination criteria. We must re-523

member that the previous sections assumed exact arithmetic, including global preser-524

vation of orthogonality of the columns of Vk. The question arises whether εLk (16) and525

εCk (20) remain upper bounds in finite precision. A rounding-error analysis is needed,526

similar to that of Strakoš and Tichý (2002) for CG A-norm error lower bounds, but527

this remains for future work. The rigorous analysis of Golub and Strakǒs (1994)528

shows that Gauss-Radau quadrature may not yield upper bounds in finite precision,529

yet its use in finite-precision computation remains justified. In all of our numerical530

experiments with positive semidefinite A, we have observed that the computed εLk and531

εCk are indeed upper bounds on the errors in xLk and xCk until convergence. It may532

therefore be possible to derive the error bounds in this paper only using assumptions533

of local orthogonality in the CG and Lanczos algorithms.534

For positive semidefinite A, we have seen in practice that if λest is close to λr, the535

error bounds are remarkably tight. Heuristically, we observe that when λest is loose,536

|λr|{|λest| « εLk {}x‹´x
L
k }. It was shown in Sections 8.2–8.3 that the error estimate is537

an upper bound until convergence, after which the true error may plateau but εCk and538

εLk continue to decrease. This property makes it possible to terminate the iterations539

as soon as εLk or εCk drops below a prescribed level.540

For CG with positive semidefinite A, we have seen that εCk is typically one or two541

orders of magnitude larger than the true error for reasonable choices of λest. Using542

the εCk termination criterion will ensure that the error satisfies some tolerance, but543

CG may take a few more iterations than necessary to achieve that tolerance.544

For SYMMLQ with indefinite A, although εLk is not guaranteed to upper bound the545

error, it still acts as a useful estimate of the error. Since εLk may diverge from the exact546

values, if one monitors the residual it would not be difficult to tell if εLk is erroneously547

approaching zero. Since εLk tends to upper bound the error near convergence, it can548

still be used in conjunction with other termination criteria involving the residual and549

related quantities, to obtain solutions that probably satisfy a given error tolerance.550
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Table 2: Comparison of CG and SYMMLQ properties on a positive semidefinite con-
sistent system Ax “ b. Italicized results hold for indefinite systems as well.

CG SYMMLQ

}xk} Õ (S, 1983, Theorem 2.1) Õ (PS, 1975), ď CG (Theorem 6)
}x‹ ´ xk} Œ (HS, 1952, Theorem 6:3) Œ (PS, 1975), ě CG (Theorem 6)
}x‹ ´ xk}A Œ (HS, 1952, Theorem 4:3) not-monotonic
}rk} not-monotonic not-monotonic
}rk} { }xk} not-monotonic not-monotonic

Õ monotonically increasing Œ monotonically decreasing
S (Steihaug, 1983), HS (Hestenes and Stiefel, 1952), PS (Paige and Saunders, 1975)

10. Concluding remarks. We have developed cheap estimates for the error in551

SYMMLQ and CG iterates, and explored the relationship between those errors. The552

main results are in (10)–(12), (15), and (20). The complete algorithm is summarized553

in Algorithm 1. Fong and Saunders (2012, Table 5.1) summarize the monotonicity of554

various quantities related to the CG and MINRES iterations. Table 2 is similar but555

focuses on CG and SYMMLQ.556

When A is positive semidefinite, our error estimates are upper bounds prior to557

convergence (under exact arithmetic). For CG, the estimate can be made tighter by558

utilizing a delay d as described in (21), for an additional Opdq flops and storage. When559

A is indefinite, the SYMMLQ estimate is not guaranteed to be an upper bound, but560

often tracks the error closely after an initial lag.561
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