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EUCLIDEAN-NORM ERROR BOUNDS FOR SYMMLQ AND CG*

RON ESTRINT, DOMINIQUE ORBAN?#, AND MICHAEL SAUNDERS$

Abstract. For positive definite and semidefinite consistent Az, = b, we use the Gauss-Radau
approach of Golub and Meurant (1997) to obtain an upper bound on the error |z« — k|2 for
SYMMLQ iterates, assuming exact arithmetic. Such a bound, computable in constant time per
iteration, was not previously available. We show that the CG error |z« — 2|2 is always smaller,
and can also be bounded in constant time per iteration. Our approach is computationally cheaper
than other bounds or estimates of the CG error in the literature. As with other approaches using
Gauss-Radau quadrature, we require a positive lower bound on the smallest nonzero eigenvalue of
A. For indefinite A, we obtain an estimate of |@« — zL|2. Numerical experiments demonstrate that
our bounds are remarkably tight for SYMMLQ on positive definite systems, and therefore provide
reliable bounds for CG.

Key words. symmetric linear equations, iterative method, Krylov subspace method, Lanczos

process, CG, SYMMLQ), error estimates

AMS subject classifications. 65F10, 65F50

1. Introduction. We consider the conjugate gradient method (CG) (Hestenes
and Stiefel, 1952) and SYMMLQ (Paige and Saunders, 1975) for solving symmetric
linear systems Ax = b, where A € R™*" is a sparse symmetric matrix or a fast linear
operator, i.e., one for which operator-vector products Av can be computed efficiently.
For zg = 0, the kth iterates z{ and z£ formed by CG and SYMMLQ lie in the kth
Krylov subspace Ky = span {b, Ab, ... ,Akilb}. In exact arithmetic, Krylov methods
ensure there is an iteration ¢ < n for which z§ = 2}, ; = z., the pseudoinverse (min-
length) solution, where xf is defined for iterations k = 2,...,¢+ 1. (Our notation
differs from that of Paige and Saunders (1975) so that both 2% and z{ are in Kj.)

When A is positive definite, it is known that the CG error |z, —2{ |2 is monotonic
(Hestenes and Stiefel, 1952, Thm 6:3), although it is not minimized in K at each
iteration. The error is also monotonic for SYMMLQ, as it is minimized in a related
space (Saunders, 2016). Empirically, CG typically maintains a smaller error than
SYMMLQ by an order of magnitude, but neither CG nor SYMMLQ provides an obvious
estimate of the error from above. Although the norm of the residual, r = b — Az =
A(zx, — x), can be computed, it may yield loose bounds that depend on the condition
number of A, such as

|2+ — z||2 < 7|2
|l2 ([P

Tighter estimates of the CG error using Gauss-Radau quadrature are developed by
Golub and Meurant (1997), Meurant (1997, 2005), and Frommer, Kahl, Lippert, and
Rittich (2013).

Jov = zll2 < |72 A7Y2  and | Al2[ A2
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2 RON ESTRIN, DOMINIQUE ORBAN, AND MICHAEL SAUNDERS

Here, we derive cheaply computable estimates of the error for both CG and
SYMMLQ. Our estimates are upper bounds when A is symmetric positive definite, or
when A is symmetric positive semidefinite and the system is consistent. As with the
other approaches using Gauss-Radau quadrature, we require a positive lower bound
on the smallest nonzero eigenvalue of A.

In section 2 we provide a brief overview of SYMMLQ. In section 3 we derive upper
bounds on the SYMMLQ and CG errors when A is positive semidefinite, the system
is consistent, and under the assumption that computations are carried out in exact
arithmetic. Section 4 gives recursions for the error bounds. In section 5 we discuss the
implications when A is indefinite, and in section 6 we discuss parameter choices for
the error estimates. In section 7 we compare our error bounds with existing bounds
and estimates. We test the error estimates on problems from the SuiteSparse Matrix
Collection and compare them against existing approaches in section 8. We discuss
use of the error bounds in termination criteria in section 9. Note that our derivations
assume exact computation. The numerical experiments suggest that the theoretical
upper bounds remain upper bounds in practice until convergence if the eigenvalue
estimate Aoy is reasonable. A finite-precision analysis is left for future work.

1.1. Notation. Matrices are denoted by capital letters A, B, ..., vectors by
lowercase letters v, w, ..., and scalars by Greek letters a, 3, v, ..., with exceptions
for ¢ and s, which are used for plane reflections with ¢ + s2 = 1. We use e, to denote
column k of an identity matrix of appropriate size, | - | denotes the Euclidean-norm,
and ||-|| 4 is the energy norm defined by |u|? := uTAu for A symmetric positive definite
(SPD). If A is symmetric, Ajmin|(A) denotes its smallest eigenvalue in absolute value.

For brevity, we use the term error to refer to both the error vector and the norm
of the error, depending on the context.

We assume that xy = 0. If a nonzero starting vector x( is available, we take
“Ax, = b” to be AAx = b — Az with a zero starting vector, then z, = zo + Ax.

2. Overview of CG and SYMMLQ. Both CG and SYMMLQ may be derived
from the Lanczos (1950) process, which generates orthonormal vectors vy, € K, such
that, at the kth iteration, we have the factorization

(1) AV = ViTy, + Brsrvkiier = Vi Ly,

where V}, = [v1 ... vg] is orthonormal in exact arithmetic,

ap Bo
T = By ay _ [ Tk}l 5k€k1]’ and T, = [ Ty T]_
L By Brej_1 A Br+1€j
Be  ax
In particular, v = b with $; := ||b|. The iterates 2§ = Viy$ and 2F = Viyk are

defined by the following subproblems (Saunders, 1995):
(2) Twy$ = Bres and yk = arg ;rel]g]} ly| such that T% ,y = Bier.

For reference, the CG iterates are defined by Hestenes and Stiefel (1952) as

2§ = argmin ||z, — 24,

ey
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EUCLIDEAN ERROR BOUNDS FOR SYMMLQ AND CG 3

and the SYMMLQ points are characterized (Fischer, 1996; Saunders, 2016) by

rf =argmin |x| such that b— Az L Ky,

el
=argmin ||z, — |, with AKj_; = span {Ab, A%, ... ,Ak_lb} .
IEA)C]C,1
When A is singular but Az = b is consistent, Krylov subspace methods identify
the same (minimum-norm) solution, as explained in the following proposition.

PROPOSITION 1. Assume symmetric A is singular but Ax = b is consistent. Let
x, be the solution produced by a Krylov subspace method for solving Ax, = b; that is,
T4 € Ky for some £. Then x4 is the unique solution to

(3) min ||z|| subject to Az =b.

Proof. First note that necessary and sufficient conditions for z, to solve (3) are
that Az, = b and z, € range(A4). Since Az = b is consistent, b € range(A), and so the
Krylov subspace is contained in range(A), implying that =, € K < range(A). Since
Az, = b and z, € range(A), it must be the solution to (3). |

Proposition 1 implies that CG and SYMMLQ will identify the same solution to
Ax =b.

2.1. The SYMMLQ iterates. We provide some key properties of SYMMLQ
and describe some of the quantities that are computed at the kth iteration. Many of
the factorizations are reused and modified to obtain estimates of the SYMMLQ and
CG error. A more detailed treatment is given by Paige and Saunders (1975), from
which we derive most of the notation (with minor differences).

To obtain xﬁ, we compute the LQ factorization T;€_16,2{71 = Lj_1, where Qj_1
is orthogonal and

"M
d2 e
I ,i= |8 09 s

€k—1 Op—1 r-1
Note that the diagonal entries of Lj_; are ; for j = 1,...,k — 2, and the last entry
is 1. A single 2x2 reflection is applied on the right to obtain T ,QF =Ly, 0],
so that Ly_q differs from Lg_; only in the last diagonal entry, which becomes v;_1.
The reflection is constructed so that

Ye—1  Br Ye-1 O
= Ck Sk _
Ok Qg |:5k: _Ck] =| 0 %
0 Brs1 Ek+1 Okt1

The first iteration begins with k& = 2 (because SYMMLAQ) iterates are defined only for
k> 2), and 1 = ay and 69 = B5. For k = 2, define z;_; = [(1 Ck_l]T as the

solution to Lj_125_1 = B1e1. Note that yL = QF [zko_l] solves (2), so that

(4) zf = Viyr = ViQF [Zko_l] =Wy [zko_l] = Wi_12k-1

with the orthogonal matrix W, = VkQZ = [u)1 ce. Wp_1 wk] = [Wk,l u?k].
Paige and Saunders (1975) establish the following results.

This manuscript is for review purposes only.
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4 RON ESTRIN, DOMINIQUE ORBAN, AND MICHAEL SAUNDERS

LEMMA 2. The SYMMLQ iterates x¥ satisfy the following properties:

1. :c,% = x£71 +(p1wi_1 € Ky, with wg_1 L :c,%fl. Furthermore, H:c,%H = |zk—1]
and is monotonically increasing.

2. Since mé is updated along orthogonal directions, |z, — :vﬁ
is monotonically decreasing.

3. It is possible to transfer to the CG iterate via the update J;ko = xﬁ + Gy,
where Ek = (i/ck+1 and W L Ky are byproducts of the SYMMLQ iteration.
Note that [2¥ 2 = |2E|? + CZ.

1% = llal? = ]

3. Upper bounds on the error when A is semidefinite. In this section,
we derive an upper bound on the error in SYMMLQ and build upon it to derive an
upper bound for CG. As with other Gauss-Radau based approaches, we assume the
availability of a non-zero underestimate to the smallest non-zero eigenvalue of A.

We assume that A is positive semidefinite with rank r < n, but that Az = b is con-
sistent. The situation where A is SPD is simply a special case. Let the spectrum of A
beordered as0 = A, = -+ = A\py1 < A\ < -+ < Aq, and consider an underestimate of
the smallest nonzero eigenvalue At € (0, A). Under the above assumption, SYMMLQ
and CG identify the pseudoinverse solution z, = Ab = argmin, {|z| | Az = b}. The
Rayleigh-Ritz theorem states that

A\, = min{vTAv | v € Range(A), |v|| = 1}.

In addition, for any u € R* with |u| = 1, Vyu € Range(A) because each v; € Range(A),
and |Viu| = 1. Then, each T}, is positive definite because u? Tyu = (Viyu)? A(Viu) >
A > 0. Because each £ and z{’ lies in Range(A) by definition, the SYMMLQ and CG
iterations occur as if they were applied to the symmetric and positive definite system
consisting in the restriction of Ax = b to Range(A).

3.1. Existing error estimates for Krylov subspace methods. There has
been significant interest in estimating the A-norm of the CG error, the history of
which is detailed by Strakos and Tichy (2002). The Euclidean-norm has received less
attention as it is more difficult to estimate for CG, although it has been studied by
Strako§ and Tichy (2002), Golub and Meurant (1997), Meurant (1997, 2005), and
Frommer et al. (2013). Although estimates for the CG error are derived by Meurant
(2005), they are not proved to be upper bounds, while those of Frommer et al. (2013)
are upper bounds but can be more expensive in ill-conditioned cases in order to
achieve improved accuracy (by increasing d in section 7). The only Euclidean-norm
SYMMLQ error upper bounds we are aware of are those of Szyld and Widlund (1993),
who provide a pessimistic geometric error decay rate.

The strategy behind estimating error norms is to recognize the error and related
quantities as quadratic forms r7f(A)r evaluated at A for a certain function f (for
example, f(§) = €72 and r = b — Ax) and seek estimates of this quadratic form. If
A = PAPT is the eigenvalue decomposition of A, p; is the i-th column of P, and \;
is the i-th largest eigenvalue, then the quadratic form can be expressed as

(5) be(A)b: bTPf(A)PTb: Zf()‘z) ?’ QSZ = p;rba i = 177”

i=1
The connection between such quadratic forms and their approximation via Gaus-
sian quadrature is most notably studied by Dahlquist, Eisenstat, and Golub (1972),
Dahlquist, Golub, and Nash (1979), and Golub and Meurant (1994, 1997), who show
it is possible to derive upper and lower bounds using the Lanczos process on (A, b).
We follow this strategy to bound the SYMMLQ and CG errors.

This manuscript is for review purposes only.
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EUCLIDEAN ERROR BOUNDS FOR SYMMLQ AND CG 5

3.2. Upper bounds on the SYMMLQ error. According to (4) and result 2
of Lemma 2, we have

(6) loe = a2 = lza]® = lox1? = |2 ]® = e[

Thus it is sufficient to find an upper bound on |z.[? = b7 A~2b, assuming temporarily
for the clarity of exposition that A is SPD. In this section, we show how to obtain
such a bound at the cost of a few scalar operations per iteration.

We are interested in the choices f(£) = 72 (with & = A) as well as f(£) = £71
(with € = A2%). Although these appear to be exactly the same, the estimation proce-
dure and convergence properties of the estimates are different when A is indefinite,
since A2 is guaranteed to be positive semidefinite.

When A is only semidefinite, we need to estimate the quadratric form |z, |* =

b7 (AT)* b = bTf(A)b, where

@ G {g e

From the eigensystem A = PAPT, this quadratic form is expressible as
.
2 _ .
.| :Z/\iz 7 i =plb, i=1,...,r
i=1

Compared to (5), the only difference is that we now compute the sum over the nonzero
eigenvalues.

We do not repeat the derivation of using Gauss-Radau quadrature to obtain an
upper bound on such quadratic forms. The details can be found in (Golub and
Meurant, 1994, 2009; Meurant, 2006). The following key theorem is the basis of our
approach.

THEOREM 3. Let A be positive semidefinite, Ax = b be consistent, f : (0, c0) —
R, and let the derivatives of f satisfy fC™+t(€) < 0 for all € € (Ar, Amax(A)) and
all integers m = 0. Fiz Aest € (0, ). Let Ty, be generated by k steps of the Lanczos

process on (A,b) and let
= Ti-1  Brer—
Ty = ,
: [ﬂk€£1 Wk

where wy, is chosen such that )\min(fk) = Aest- Then

bTF (A < [bl*ef f(Ti)er

Proof. The result follows from (Golub and Meurant, 1994, Theorem 3.2) and the
section preceding it, as well as (Golub and Meurant, 1994, Theorem 3.4), although
those results only consider the case where A is SPD. ]

Because Tj,_1 = VkT_lAVk,l in exact arithmetic, the Poincaré separation theorem
ensures that Ay < Amin(Th—1) < Amax(Th—1) < Amax(A) for all k. On the other hand,
the Cauchy interlace theorem guarantees that Ay, (T %) < Amin(Tk—1). As Theorem 3
announces, because A, > 0, it is possible to select wy, to achieve a prescribed Ay, (T %)

The objective is to compute wy, in fk, then efficiently evaluate the quadratic form.
Golub and Meurant (1994) show that wg = Aest + Mk—1, where 7,_1 is obtained from
the last entry of the solution of the system

(8) (Tr—1 — Nest]) up—1 = Brex_1.

This manuscript is for review purposes only.



6 RON ESTRIN, DOMINIQUE ORBAN, AND MICHAEL SAUNDERS

189  To compute ug_1, we take the QR factorization of T;_1 — Aest/ analogous to the LQ
190 factorization of T' Z—l in SYMMLQ. This differs from (Orban and Arioli, 2017), where
191 a Cholesky factorization is used, but QR factorization allows us to solve the indefinite
192 system using a stable factorization. It begins with the 2 x 2 reflection

193 o s [al_)‘est B2 ]: [Pl o2 7'3]
1<)1 sgw) —ng) B2 a2 — Aest B3 p2 o3|’

195 and proceeds with reflections defined by

(w) (w) - = _ , ,
Con ¢ S Pj Oj+1 _|Pi T+ Tjt2
196 (w) (w) . . )\ ﬁ - — — .
197 55 —C; 5g+1 Q541 — Aest j+2 Pj+1  Oj+2

198 Putting the QR factorization together, we have

_,01 02 T3 |
>< >< e X
X X X P2 03
199 kal - )\est-[ = . : P3 I Te—1 |’
(w) (w) .
Sk—2  “Ck—2 © Tk
200 L Pk—1

201  where x is a placeholder for entries we are not interested in. We do not need to

202 compute the QR factorization fully as we require only the scalars 3,(:1)2, 02@2, and

203 pr—1 at the kth iteration. The relevant recurrence relations are

204 P1 = 1 — Acst,
205 Gy =fa, =1,

AL
206 p1=1/Pi + 53, ) = N et s = &;

1 P1
207 for k > 2:
, S @) s @)y
208 Pk = S 10k Ck_1<ak: est)7
209 Ok+1 = —C;(fi)lﬁkﬂa Tk = s,(:i)Qﬁk,

- W) Pk W) _ Bre1

210 e= R B, A= s
o P Pk k+1° k or k Ok

212 From the QR factorization of (8), we see that

7,01 02 T3 ]
X X 0
X
p2 03
: X X 2
213 ps o T = Brer—1 = 0 ;
X . . S(W) 2 (w)
. : k—2 /Bksk72
(z’k_l Mk—1 X . . _C](:i)g _BI%C}(:])Q
214 L Pt ] )
215  and therefore n,_, = 76,30551)2//31@_1, with wg = Aest + Mk—1-

This manuscript is for review purposes only.
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EUCLIDEAN ERROR BOUNDS FOR SYMMLQ AND CG 7

We now describe how to compute BfelTTk_ 2e, efficiently. Note that if we take the
LQ factorization of Ty = LiQy, then by symmetry of Ty,

> X -1
Bl Ty %er = Bel (LiQr)~ (Lka) e1
BlelL TLk 61 = HBILI@ 61H
(9) = |%)”

where Zkzk = [1e1. Because Tk differs from T} only in the (k, k) entry, we have

> Lj— 0 cr sk | [0k ] [k
Lk = [EkeE_Q—kaeE_l wk]’ where [Sk —Ck:| [wk k|

where 5 comes from the LQ factorization of Tj. The vector Zj is closely related to
2. Indeed Ly_12z5_1 = B1e1, and therefore

(10) Zy = [Z]kal] , Cr = —wik (erCh—2 + VrCr—1) -

Theorem 3 (with f defined in (7)) and (9) imply that |z.]* < |3 so that (6) yields
L2 2 L2 2 2 2

(11) lzw — 2 |? = lal® = ek [ < 126l = lze-1] = (e£)?,
where we define
(12) er; = |Ckl-
Thus, with only a few extra floating-point operations per iteration we can compute
an upper bound eﬁ on the SYMMLQ error in the Euclidean-norm.

Note that this approach can be applied when a positive definite preconditioner
M ~ A is used. The preconditioner changes the Lanczos decomposition, but all
remaining computations carry through as above. We obtain an estimate of the error
in the norm defined by the preconditioner, namely ||z, — 2|,

3.3. Upper bounds on the CG error. We now use the error bound derived
in the previous section to obtain an upper bound on the CG error in the Euclidean
norm. We first establish that the CG error is always lower than that of SYMMLQ for
A positive semidefinite and Ax = b consistent. Although the result yields the trivial
upper bound (12), it also allows us to identify an improved bound. Define the kth
CG direction as py with step length af > 0, so that 2§ = Z?Zl af'p;.

LEMMA 4 (Hestenes and Stiefel, 1952, Theorem 5:3). The CG search directions
satisfy piij >0 foralli,j.

The following lemma is also useful in our analysis.

LEMMA 5. For1<k</fland0<d; <dy <l-—k,
(C )T C>(C )TC’

T,C -
Thtdy) Tk Thtd,

122, and in particular, zTz$ > |=$)%

Proof. Because ac > (0, Lemma 4 yields

k+ds k+da
(Tpya,) T xd = (mk + Z aj p1> g = Ha:k Z Zacacpfp]

i=k+1 i=k+17=1
k+dy
= Hmk Z Z ozcacplTpJ
i=k+1j=1
(13) > [af H .

This manuscript is for review purposes only.
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We now relate the Euclidean-norm errors of SYMMLQ and CG.

THEOREM 6. Let A be positive semidefinite and Ax = b be consistent and let x,
be the solution identified by both CG and SYMMLQ by virtue of Proposition 1. The
following hold in exact arithmetic for all 2 < k < £:

(14) EAN A
(15) e =2 < Jaa — 2]

Proof. Result 3 of Lemma 2 proves (14), and this with Lemma 5 implies

=" + 2 | < 2|af|” < 207af.
Rearranging and adding |z.||> to both sides gives
Joal® = 20T+ o[ < ] ~ o]

By factoring the left and using result 2 of Lemma 2 on the right, we obtain (15). 0O

Although the proof of Theorem 6 assumes exact arithmetic, we have observed
empirically that the result holds until the error in wé plateaus at convergence.
Theorem 6 immediately establishes the trivial bound

(16) |z =] < o — ] < e,

which provides an upper bound on the Euclidean-norm CG error, in contrast to the
estimates of Meurant (2005). We can improve bound (16) using a few observations.
From Lemma 5,

(17) O = oy — |2 |* >

Hence from part 3 of Lemma 2

Hx* -y ” Hx*H — 22T xk + ka H
= [lz]* = 26 — ||
= o — 26, — |2 " - &,
and since ||x* || |§k | it follows that
2. = 2€|” = |z — 2F|” — G — 201
(18) <G —CF— 20k
(19) <G-G.

Since (j, is readily available as part of the SYMMLQ iteration, (19) is an improvement
upon the bound (16). Unfortunately, bound (18) is not computable because z, is
unavailable. We define

(20) o == /G - <|G| =

as an upper bound on the error of the kth CG iterate.

This manuscript is for review purposes only.
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From (13), we could further improve the error estimate by approximating 6y
from below by introducing a delay, implemented using the sliding-window approach
originally appearing in Golub and Strakos (1994) (stabilized by Golub and Meurant
(1997) and used by Meurant (2005) and Orban and Arioli (2017)). Given Lemma 5,
we define an approximation of (17) as

d
0 = (@l ) al — el P <6, (d>0),

noting that 0 < 9,(61) << 9,&67}6) = 0.
We now describe how to compute 9,(Cd) without storing the iterates x% . ,xkc+ d
explicitly. Recalling that mkc = mé + Cpy, = Zi:ll Cw; + (g, we have

d S _\T — -
el(c ) = (33£ + Ckwk) ($£+d + Ck+dwk+d) - (HﬁHQ + Ci)
= llzk I? + Gewi v g + CeCrra®i Wrra — (|2 |? + &)
 ktd—1 o )
=Gk Y, Gk wi + Gy atlf Dy — CF,
ik

where we use the fact that w] w; = 0 for i # j and W} w; = 0 for j < i. We now use
the fact that
i i
wfwz = Cit1 n s; and w,{wl = H s; fori>k,
j=k+1 j=k+1

so that

L ke i  h+d )
9;2 ' =G 2 (CiCiJrl 1_[ Sj) + CkChd H sj — Cr-

i=k j=k+1 j=k+1

We can compute Glgd) in O(d) flops and O(d) storage by maintaining d partial products
of the form H;:,H_l sjfor k+1 <14 < k+d. At the next iteration we can divide each
partial product by sii1 and multiply the last one by sii4 to obtain the necessary
partial products for iteration k + 1.

With the above expression we can improve (19) to

(21) e — 21 < () — 2017

This improved bound is only noticeable when Aegt is a close estimate to Apin. Oth-
erwise, the difference between the € and |z, — z{'| is dominated by the error in the
Gauss-Radau quadrature (the difference between €& and |z, — zE|)).

It is not necessary to implement CG via the transfer point from SYMMLQ in
order to compute these error bounds because only {ay, i} from the Lanczos process
are required. These can be recovered from the classic Hestenes and Stiefel (1952)
implementation of CG using equations provided by Meurant (2005).

For positive semidefinite A, we have derived upper bounds on the SYMMLQ and
CG errors when Ax = b is consistent. Only a few extra scalar operations are needed
per iteration, and O(1) extra memory.

4. Complete algorithm. Algorithm 1 provides the complete algorithm to com-
pute the error bounds eé and ekc, given {ay, O} from the Lanczos process. Although
it did not make a difference in our numerical experiments, it may be safer in practice
to compute reflections using a variant of (Golub and Van Loan, 2013, §5.1.8).
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10 RON ESTRIN, DOMINIQUE ORBAN, AND MICHAEL SAUNDERS

Algorithm 1 SYMMLQ with CG error estimation

1: Input: A, b, and Aegt such that Aest < Apmin(4).

2: Obtain ay, B1, B2 of Lanzcos process on (4, b) )

391 =a1,02 = 2,61 =62=0 > begin QR of L,

4 1 = 01 — Aest, 02 = B2, p1r = /D5 + B3 > begin QR of (8)

5: c(()w) =1, cg‘”) = (a1 — Aest)/p1, sﬁ‘“) = B2/p1

6: o=0,¢G=0/7 > initialize remaining variables

7. for k=2,3,... do

8: V-1 = \/'_7}%_1 + ﬂ]%

9 k= TYe—1/Th—1s Sk = Br/ -1

10: Obtain ag, Bk 41 from Lanczos process on (4, b) B

11: O = OpCr + Sk, Ve = O0kSk — QECL > continue QR of L

12: Ek+1 = Br+18ks Ok1 = —Brr1ck

13: Ck—1 = Ck—1Ck > forward substitution

14: = —(erCh2 + 0kCh—1)/k

15: M1 = —5;301(51)2//51971 > forward substitution on (8)

16: Wg = )\esj + Nk—1 B

17: ¢k = 0 + SpWk, Wk = SpOk — CRWik

18: el = |(exCr2 + YrCr_1)/k| o> compute error bounds
1

10 e = ((ef)* = ¢})?

20: Pr = 8;(:0_)151@ — c;w_)l (g — Aest) = continue QR of (8)

21: Ok+1 = _C](Cui)lﬁk+la Pk = A/ ﬁ% + 6}3+1

22: c,(;d) = ﬁk/pk, 5;(:)) = Brs1/pk
23: end for

5. Estimation of |z, — 2L| with A indefinite. We now focus on the SYMMLQ
error when A is indefinite. Theorem 3 no longer applies, and so ﬁ%e{ﬁ; %e; is only
an estimate of |a,| rather than an upper bound.

There are two approaches. The first is to continue as in subsection 3.2 and accept
e,% as an estimate of the error rather than an upper bound. Alternatively we can
treat ||z.]|2 = bT(A?)'h as a quadratic form in A2 rather than A. (Recall that for
real symmetric A, (42)7 = (AT)2.) We formulate the problem as upper bounding the
energy norm |z, | = |b] g+ with B = A2. Such computation is akin to computing the
energy norm error for CG using Gauss-Radau quadrature, which has been studied by
Golub and Meurant (1997) and others. The main difficulty is that it requires applying
the Lanczos process to A2 and b, which means two applications of A per iteration of
SYMMLQ. Although this theoretically guarantees that we obtain an upper bound on
|z« (and therefore an upper bound on the error), roundoff error can diminish the
quality of the estimation.

With these ideas in mind, we consider the procedure outlined in subsection 3.2,
treating b7(A?)Tb as a quadratic form in A to estimate the error. In numerical ex-
periments we observe that the estimate often remains an upper bound, even as the
iterates converge to the solution. It is possible to loosen the error estimate by choosing
a smaller value for A\est to encourage the estimate to remain an upper bound; however,
without knowing A| i, |, this may not be a practical solution. This is also illustrated
in the numerical experiments.
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Note that with A indefinite, Aes¢ should be chosen between zero and the eigenvalue
closest to zero (keeping the sign of that eigenvalue). This is the only difference in the
computation of eé . There may be iterations where Ty_1 — Aest/ becomes singular,
and it may not be possible to compute e/ for that iteration, but the QR factorization
of T}, — Aestd will remain computable at future iterations.

6. The choice of \.. A reasonably tight underestimate of Aeg is required for
approaches using Gauss-Radau quadrature, such as for the error estimates proposed by
Meurant (1997) and Frommer et al. (2013). The quality of our error bounds is directly
dependent on the quality of the Gauss-Radau quadrature, which in turn depends on
the quality of the eigenvalue estimate. Meurant and Tichy (2015) investigated the
effect of Aegy on the quality of Gauss-Radau quadrature for the CG A-norm error.

If Ajmin| := arg minye a4y |A| is known, one should choose Aesy = (1 —€)Ajin| With
€ « 1. In the experiments below, we usually use ¢ = 107!°. Choosing Aes; slightly
closer to zero alleviates numerical stability issues in computing wy with a near-singular
Ti — AestI. This also applies when A is indefinite.

One example where it is trivial to obtain an underestimate of the smallest eigen-
value is for shifted linear systems (A + §I)x = b with A SPD and 6 > 0, where the
choice Aegt = § may give good error estimates if A is close to singularity. This is of
interest for regularized least-squares problems (ATA + 62I)z = ATb and is exploited
by Estrin, Orban, and Saunders (2016).

When Ay is not known, the choice of A5y becomes application-specific. It
may be possible to estimate the smallest eigenvalue as the iterations progress, similar
to Frommer et al. (2013), although this is the subject of ongoing research. If no
information is known about the spectrum of A, Gauss-Radau quadrature approaches
such as the one presented in this paper may not be practical.

7. Previous error estimates. As discussed in subsection 3.1, there are other
approaches to estimating the error in the iterates of Krylov subspace methods, par-
ticularly for CG. In this section we provide a brief overview of the approaches taken
by Brezinski (1999), Meurant (2005), and Frommer et al. (2013) as applied to CG,
followed by some numerical experiments comparing the approaches. Only the error
estimate by Brezinski (1999) applies to SYMMLQ as well. We include this in the
numerical experiments.

Brezinski (1999) describes several estimates of the error for nonsingular square
systems, including

e
| Ari”

(22) 2. — zk| ~ T =b— Axy,

(see also Auchmuty (1992)). This estimate is simple to implement, but requires an

extra product Ary each iteration. The estimate can be made into an upper bound by

multiplying it by the condition number of A, or an upper bound thereof, assuming

the latter is known ahead of time, although this considerably loosens the estimate.

Thus, such conversion to an upper bound is only possible when A is nonsingular.
Meurant (2005) uses the relation

_ _ b _
(98) s —af1” = I (T T %ex — eF T %er) + (1) B s — 2 T LA el Ty e,
k

to relate the A-norm error to that of the Euclidean error for CG iterates. The first term
can be approximated by introducing a delay d and replacing el 7:72¢; by elTTk_ fdel.
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Table 1: Cost of computing an error estimate for CG using various methods, where d
is the window size for methods using a delay (denoted by *). The right column refers
to whether the method guarantees an upper bound in exact arithmetic.

Cost per iteration | Storage Upper bound
Brezinski (1999) O(n + nnz(A)) O(1) | Yes, if scaled by k(A)
Meurant (2005)* 0(1) 0(d) No
Frommer et al. (2013)* O(d?) O(d) Yes
This paper, bound (20) 0(1) 0(1) Yes
This paper, bound (21)* O(d) O(d) Yes

The A-norm error can be estimated via Gauss quadrature as described by Golub and
Meurant (1997), and the remaining terms by updating a QR factorization of T}, so
that the total cost is only O(1) flops per iteration.

Frommer et al. (2013) use the fact that r{’ = |r{||vg,1, where vy41 is the (k+1)th
Lanczos vector, and so

(24) loe — 21 = g Pk A vps

The right-hand side of (24) is upper-bounded using Gauss-Radau quadrature. Rather
than restarting the Lanczos process on A using vg11 as the initial vector at each CG
iteration, they cleverly perform the Lanczos process on the lower 2d x 2d submatrix
of Ty t+q+1 using eq41 as the starting vector, thus recovering the same estimate. The
restarted Lanczos factorization requires O(d?) flops at each iteration.

In Table 1 we summarize the costs of the various error estimates for CG and say
whether the estimate can be shown to be an upper bound in exact arithmetic.

8. Numerical experiments.

8.1. Comparison with previous estimates. We give some numerical exam-
ples comparing the various error estimation procedures for CG and SYMMLQ, using
SPD matrices from the SuiteSparse Matrix Collection (Davis and Hu, 2011) and Mat-
lab implementations of all error estimates described in section 7. In each experiment,
we use b = 1/4/n and compute x, = A\b via Matlab. The solvers terminate when
|re] /6] < 10719, For estimates using a delay d, we report the estimated error at
iteration k using information obtained during iterations k,k+1,...,k + d. Estimates
requiring bounds on eigenvalues use (1 — 1071%)\ i, (A) for the lower bound and
(1 + 10719 \,ax(A) for the upper bound. (Further experiments in subsection 8.2 use
a less accurate estimate of Ayin(A).) For each approach to estimating the error, we
plot €/|zy — k|, that is, the ratio of the estimate, €, to the true error.

First we compare our SYMMLQ error estimate with that of Brezinski (1999). We
use the matrix UTEP /Dubcoval (n = 16,129 and x(A) ~ 10%). The ratio of the true
error to the corresponding bounds are plotted in Figure 1a. We see that our bound is
close to the true error until zZ attains its maximum accuracy, whereas the Brezinski
(1999) estimate is a lower bound on the error for the examples in this section; however
if it is scaled by x(A) then it becomes a loose upper bound.

We now compare the estimates for CG from (20) and (21) using a well-conditioned
system (again UTEP/Dubcoval) and an ill-conditioned system (Nasa/nasad704, n =
4704 and x(A) ~ 107). In Figure 1b, we see that all estimates do fairly well, as they
are off by at most one or two orders of magnitude. Estimate (20) performs nearly
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SYMMLQ Error for UTEP/Dubcoval GG Error for UTEP/Dubcoval
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Iteration

(b) CG. Window size d = 10 used.

Fig. 1: €/ |z« — x| for SPD system UTEP /Dubcoval using SYMMLQ and CG, where
€k is the error bound for either SYMMLQ or CG.
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Estrin et al (d=0)
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- Estrin et al (d=100)
~ ~ Frommer et al (d=100)
Brezinski

L L L L L L L L
0 05 1 15 2 25 3 0 05 1 15 2 25 3
Iteration Iteration

(b) d = 100

x10%

(a) d=10

Fig. 2: €f/|z. — z{| for SPD system Nasa/nasa4704.
used for estimates that take advantage of them.

Delays d = 10 and 100 are

as well as those of Meurant (2005) and Frommer et al. (2013) when d = 10, until
a divergence occurs near iteration 70. The improved estimate (21) appears tightest
until that same divergence occurs.

Next, we compare against the estimates of Meurant (2005) and Frommer et al.
(2013) on Nasa/nasad704 using d = 10 in Figure 2a and d = 100 in Figure 2b. We
see that for d = 10, the (Meurant, 2005) estimate is not an upper bound, while that
of Frommer et al. (2013) is looser than ours. The situation is improved for the other
estimates with d = 100, where (20) and those of (Meurant, 2005; Frommer et al.,
2013) are fairly similar, but the Meurant (2005) estimate is still not an upper bound,
and the estimate of Frommer et al. (2013) is more costly for such d. We also note
that in this case, increasing d does not noticeably improve (21) compared to (20).

For CG, (20) is the cheapest and in exact arithmetic is guaranteed to be an upper
bound. At the same time, it is not necessarily the tightest estimate, and the estimate
of Frommer et al. (2013) has the advantage of improved accuracy of the error estimate
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Fig. 3: €£(")/ Hx* — xé“ for two SPD systems. The Gauss-Radau approach gives upper
bounds, while the delay gives lower bounds.

with increased window size d (moreso than (21)), although at a higher computational
cost and it requires computing d iterations into the future. In some cases, such as
Figure 2a, a good estimate that is not guaranteed to be a bound may more useful,
but without accuracy guarantees it may be difficult to use such estimates within
termination criteria.

8.2. Additional SPD experiments. We evaluate the quality of our error
bounds (12), (20) and (21) on further SPD examples from the SuiteSparse collection.
Again we solve Ax = b with b = 1/y/n, taking z, = A\b from Matlab and terminating
when [ /[b] < 107 We compute Ajpin(A4), the eigenvalue closest to zero, and
obtain the error bounds using Aest = fAjmin|(A), typically with g = 1 — 1071 or
0.1. We also include a lower-bound error estimate using a delay (Hestenes and Stiefel,
1952; Golub and Strakos, 1994). Because SYMMLQ takes orthogonal steps,

,  bHd-1 ¢ )
(25) lotsa— k"= 25 &< 2 ¢ = o —ai
i=k i=k

for any d > 1. By choosing a modest value d = 5 or 10 and storing the last d
steplengths (;, we can compute a lower bound on the error. Note that we can com-
pute a lower bound via Gauss and Gauss-Radau quadrature with Aest = |A[2. Such
techniques were used by Arioli (2013), and provide lower bounds comparable to those
using a delay. We plot €/|z. — x| to investigate the tightness of the bounds.

In the figure legends, e£(x) and €§' (1) denote the error bounds for SYMMLQ and
CG obtained from Gauss-Radau quadrature when Aest = 1A |min|(A), where 0 < p < 1.
For SYMMLQ we include the lower-bound error obtained using a delay with d > 1,
denoted by €&(d).

For SYMMLQ on Bindel/ted _B_unscaled (n = 10605 and x(A) ~ 10*!), the bound
to error ratios are shown in Figure 3a. For GHS_psdef/wathen100 (n = 30401 and
k(A) ~ 103), they are in Figure 3b. When A approximates Ajmin| = Ar well, the
bound €F is remarkably tight after an initial lag. We used u = 1 — 107 for the first
problem due to A being ill-conditioned (Amin| ~ 107'1), and g = 1 — 10719 for the
second problem. Even when A is a tenth of the true eigenvalue, it appears that
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Fig. 4: € (1)/ |z« — 2§| for two SPD systems.

the bound is at most an order of magnitude larger, still outlining the true error from
above. Only near convergence, e,% may no longer be a bound when the true error
plateaus. Having the computed bound continue to decrease after convergence is a
desirable property for termination criteria. The lower bounds eﬁ (d) oscillate an order
of magnitude below the true error in Figure 3a, but in Figure 3b, both upper and
lower bounds soon approximate the true error to within a couple orders of magnitude.

We now solve the same problems using CG. Figure 4 shows that eg is a consider-
ably looser bound on the CG error than e,I; is on the SYMMLQ error, although both
remain true upper bounds until convergence. As with SYMMLQ, if the error stag-
nates at convergence, the “bound” may continue to decrease. We see that increasing
d in (21) (when using an accurate estimate of the smallest eigenvalue) improves the
bound when A is reasonably conditioned, but does not have a large impact for ill-
conditioned problems. Also, ekc diverges slightly from the true CG error when the
error is roughly the square-root of the maximum attainable accuracy; in particular, d
has nearly no noticeable effect past that point. This is probably due to (; becoming
an order of magnitude smaller than e&.

8.3. Empirical check. To check whether the error bounds behave as upper
bounds numerically, we ran SYMMLQ and CG on all SuiteSparse matrices of size
n < 25000 with x(A) < 106, resulting in 140 problems. We used b = 1/4/n and
Aest = (1= 10719 A\pin or 0.1\ i, and terminated when the estimate e],g, ekc < 10710,
We then counted the number of iterations where €& > |z, — 2F| and €{ > |z, — 2{|
were satisfied. For Aest = (1 — 10719 Apin (0.1 A min), 121 (129) problems had eﬁ and
ekc behave as upper bounds for all iterations, while for the remaining 19 (11) problems
we saw a cross-over at convergence similar to Figure 3b, with eﬁ and ekc continuing
to decrease once the true error plateaued. Thus empirically our bounds do behave as
upper bounds until convergence.

8.4. Effect of A\.. We briefly investigate the effect of Aot on the tight-
ness of the error bounds (12) and (20). We use problems UTEP/Dubcoval and
Bindel/ted_B_unscaled again as examples of well- and ill-conditioned systems.

We observe in Figures 5a and 5c¢ that for SYMMLQ, €& (p)/|v. — k|| ~ pt
after an initial lag. In the case of Bindel/ted B_unscaled, an instability occurs for
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Fig. 5: ex(p)/|zx — x| when running SYMMLQ and CG on two SPD problems for
using various values of Aest = (A min |-

p=1—107" because the smallest eigenvalue is A|pin| ~ 107, The instability is
remedied by using a slightly larger 4 = 1 — 10~%, which results in an almost identical
bound, but without the instability.

For CG in Figures 5b and 5d, we also notice that for p < 0.1, the bound loosens
by a factor of p but keeps the same shape. The exception is when u ~ 1, where the
bound is fairly tight until a divergence occurs and the bound nearly overlaps with
the curve for 4 = 0.1. The closer p is to 1, the later this divergence occurs; however
when A| iy is very small (as in Figure 5d), this may result in numerically unstable
computations. This is because we are implicitly solving against the shifted system
Ty — Aest! to compute the bound, which becomes singular as Aest approaches Ay -
Meurant and Tichy (2015) observed similar instabilities for CG A-norm error bounds
when the true error approaches the square root of machine precision.

8.5. Indefinite A. We now consider indefinite examples PARSEC/Na5 and
HB/1shp3025 (n = 5822 and 3025, xk(A) ~ 103 and 10*). The former contains few
negative eigenvalues, while for the latter, nearly half of its spectrum is negative. Fig-
ure 6a shows that with the negative eigenvalue, (12) is no longer a bound for all
iterations, and behaves only as an estimate which often dips below the true error.
However, for many problems, such as for HB/Ishp3025 in Figure 6b, we see that the
error estimate using Ajmin| remains an upper bound (until convergence) and tracks
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SYMMLQ Error for PARSEC/Na5
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Fig. 6: ef(1)/||z+ — xf| for two indefinite systems. The Gauss-Radau approach no
longer guarantees an upper bound, but works in some problems. The delay continues
to provide a lower bound.

the true error to nearly an order of magnitude. Underestimation of A, loosens the
bound, but in the case of both problems here, keeps (12) an upper bound to the true
error, although this is again heuristic.

9. Finite-precision considerations and termination criteria. We must re-
member that the previous sections assumed exact arithmetic, including global preser-
vation of orthogonality of the columns of V. The question arises whether eﬁ (16) and
€ (20) remain upper bounds in finite precision. A rounding-error analysis is needed,
similar to that of Strakos and Tichy (2002) for CG A-norm error lower bounds, but
this remains for future work. The rigorous analysis of Golub and Strakos (1994)
shows that Gauss-Radau quadrature may not yield upper bounds in finite precision,
yet its use in finite-precision computation remains justified. In all of our numerical
experiments with positive semidefinite A, we have observed that the computed eX and
¢ are indeed upper bounds on the errors in zF and z{ until convergence. It may
therefore be possible to derive the error bounds in this paper only using assumptions
of local orthogonality in the CG and Lanczos algorithms.

For positive semidefinite A, we have seen in practice that if st is close to A,, the
error bounds are remarkably tight. Heuristically, we observe that when A is loose,
M/ Aest| = €F/||ze — 2L, Tt was shown in Sections 8.2-8.3 that the error estimate is
an upper bound until convergence, after which the true error may plateau but ekc and
e,% continue to decrease. This property makes it possible to terminate the iterations
as soon as eé or ekc drops below a prescribed level.

For CG with positive semidefinite A, we have seen that ekc is typically one or two
orders of magnitude larger than the true error for reasonable choices of Aest. Using
the ekc termination criterion will ensure that the error satisfies some tolerance, but
CG may take a few more iterations than necessary to achieve that tolerance.

For SYMMLQ with indefinite A, although eé is not guaranteed to upper bound the
error, it still acts as a useful estimate of the error. Since eﬁ may diverge from the exact
values, if one monitors the residual it would not be difficult to tell if & is erroneously
approaching zero. Since eﬁ tends to upper bound the error near convergence, it can
still be used in conjunction with other termination criteria involving the residual and
related quantities, to obtain solutions that probably satisfy a given error tolerance.
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Table 2: Comparison of CG and SYMMLQ properties on a positive semidefinite con-
sistent system Az = b. Italicized results hold for indefinite systems as well.

CG SYMMLQ
|z /" (S, 1983, Theorem 2.1) /" (PS, 1975), < CG (Theorem 6)
|2+ — z&| N\ (HS, 1952, Theorem 6:3) N\, (PS, 1975), = CG (Theorem 6)
[xx — 2kl 4, N\ (HS, 1952, Theorem 4:3) not-monotonic

[l 7]l not-monotonic not-monotonic
7%l /|zx|  not-monotonic not-monotonic
/" monotonically increasing \\ monotonically decreasing

S (Steihaug, 1983), HS (Hestenes and Stiefel, 1952), PS (Paige and Saunders, 1975)

10. Concluding remarks. We have developed cheap estimates for the error in
SYMMLQ and CG iterates, and explored the relationship between those errors. The
main results are in (10)—(12), (15), and (20). The complete algorithm is summarized
in Algorithm 1. Fong and Saunders (2012, Table 5.1) summarize the monotonicity of
various quantities related to the CG and MINRES iterations. Table 2 is similar but
focuses on CG and SYMMLQ.

When A is positive semidefinite, our error estimates are upper bounds prior to
convergence (under exact arithmetic). For CG, the estimate can be made tighter by
utilizing a delay d as described in (21), for an additional O(d) flops and storage. When
A is indefinite, the SYMMLQ estimate is not guaranteed to be an upper bound, but
often tracks the error closely after an initial lag.
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