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LSLQ: AN ITERATIVE METHOD FOR LINEAR LEAST-SQUARES1
WITH AN ERROR MINIMIZATION PROPERTY˚2

RON ESTRIN: , DOMINIQUE ORBAN; , AND MICHAEL A. SAUNDERS§3

Abstract. We propose an iterative method named LSLQ for solving linear least-squares problems4
of any shape. The method is based on the Golub and Kahan (1965) process, where the dominant cost5
is products with the linear operator and its transpose. In the rank-deficient case, LSLQ identifies6
the minimum-length least-squares solution. LSLQ is formally equivalent to SYMMLQ applied to the7
normal equations, so that the current estimate’s Euclidean norm increases monotonically while the8
associated error norm decreases monotonically. We provide lower and upper bounds on the error in9
the Euclidean norm along the LSLQ iterations. The upper bound translates to an upper bound on the10
error norm along the LSQR iterations, which was previously unavailable, and provides an error-based11
stopping criterion involving a transition to the LSQR point. We report numerical experiments on12
standard test problems and on a full-wave inversion problem arising from geophysics in which an13
approximate least-squares solution corresponds to an approximate gradient of a relevant penalty14
function that is to be minimized.15

1. Introduction. We propose an iterative method (LSLQ) for solving two ubiqui-16
tous problems in computational science—the least-squares problem and the least-norm17
problem:18

minimize
xPR

n

1
2}Ax´ b}

2,(LS)19

minimize
xPR

n

1
2}x}

2 subject to Ax “ b,(LN)20
21

both of which include consistent linear systems Ax “ b as a special case. The norm22
} ¨ } is Euclidean and A may be an m-by-n matrix, but we assume more generally that23
A : Rn Ñ R

m is a linear operator because only operator-vector products of the form24
Au and ATv are required. We often refer to the optimality conditions of (LS), namely25
the normal equations26

(NE) ATAx “ ATb.27

When Ax “ b is consistent, LSLQ identifies a solution of (LN). If rankpAq ă n, LSLQ28
finds the minimum-length solution (MLS) x‹ “ A:b, where A: is the pseudoinverse.29

Motivation: monitoring the error. We briefly describe why an iterative30
method for least squares with an error minimization property is of interest.31

Van Leeuwen and Herrmann (2013) describe a penalty method for PDE-constrained32
optimization in the context of a seismic inverse problem. The penalty objective33
φρpm,uq depends on the control variable m and the wavefields u, where ρ ą 0 is34
a penalty parameter. For fixed values of ρ and m, the wavefields upmq satisfying35
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∇uφρpm,upmqq “ 0 can be found as the solution of a linear least-squares (LS) problem36
in u. The gradient of φ with respect to m is subsequently expressed as a linear function37
of upmq, say38

∇mφρpm,upmqq “ Gupmq ´ g39

for a certain matrix G and vector g. Assume now that an inexact solution ru of the LS40
problem for upmq is determined. The error in u translates directly into an error in41
the gradient of the penalty function, for42

(1) }∇mφρpm,uq ´∇mφρpm, ruq} ď }G} }u´ ru}, u ” upmq.43

If a derivative-based optimization method is to be used to minimize the penalty44
function, there is interest in a method to approximate u in which the error is monoton-45
ically decreasing. Indeed, the convergence properties of derivative-based optimization46
methods are not altered provided the gradient is computed sufficiently accurately in47
the sense that the left-hand side of (1) is sufficiently small compared to }∇mφρpm,uq}48
(Conn, Gould, and Toint, 2000, §8.4.1.1).49

In the following sections, we introduce the LSLQ method. We now comment on50
the necessity for LSLQ in order to monitor the error reliably. At this stage, it is51
sufficient to say that LSLQ applied to problem (LS) is equivalent to SYMMLQ (Paige52
and Saunders, 1975) applied to (NE). LSLQ fits in the category of Krylov-subspace53
methods based on the Golub and Kahan (1965) process, and in that sense is related to54
LSQR (Paige and Saunders, 1982a) and LSMR (Fong and Saunders, 2011) (equivalent55
to CG and MINRES applied to (NE)). As far as error monitoring is concerned, the56
key advantage that LSLQ inherits from SYMMLQ is that the solution estimate is57
updated along orthogonal directions. As a consequence, the solution norm increases58
and the error decreases along the iterations. It happens that both LSQR and LSMR59
share those properties (Fong and Saunders, 2012, Table 5.2) but with important60
differences. First, LSLQ’s orthogonal updates suggest error lower and upper bounds61
initially developed for SYMMLQ by Estrin, Orban, and Saunders (2016), and which62
are the subject of section 4. Second, the error is minimized in LSLQ, while it is only63
monotonic in LSQR and LSMR. In spite of the latter observation, the error along64
the LSQR and LSMR iterations is typically smaller than for the LSLQ iterations by65
a few orders of magnitude—see Proposition 1. This is not a contradiction because66
LSLQ minimizes the error in a transformation of the Krylov subspace. Figure 167
illustrates a typical scenario, where the error is represented along the LSQR, LSMR,68
and LSLQ iterations on two over-determined problems arising from an animal breeding69
application (Hegland, 1990, 1993), and where we consider that the solution obtained70
with a complete orthogonal decomposition is the exact solution.71

It appears from Figure 1 that LSQR is more appealing than LSLQ if one is72
interested in minimizing the error. The difficulty is that LSQR does not lend itself73
to obvious error lower and upper bounds because it is not naturally formulated in74
terms of the Euclidean norm and its solution estimate is not updated along orthogonal75
directions. Estimates of the error in the conjugate gradient (CG) method (Hestenes76
and Stiefel, 1952) applied to a symmetric and positive definite system have been77
developed in the literature, an effort led chiefly by Meurant (2005). Those estimates78
could be applied to LSQR but unfortunately they are only estimates and have not79
been proved to be lower or upper bounds. Thus it is difficult to terminate the LSQR80
iterations reliably with a guaranteed error level. Fortunately, SYMMLQ is closely81
related to CG and it is possible to transition cheaply from a SYMMLQ iterate to a82
corresponding CG iterate. LSLQ inherits that property and it is possible to transition83
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Fig. 1. Error along the LSQR, LSMR and LSLQ iterations on problems small and small2 from
the animal breeding set. The red curve corresponds to the LSQR iterates generated as a by-product
during the LSLQ iterations. The horizontal axis represents the number of iterations (each involving
a product with A and a product with AT ).

to a related LSQR iterate at any iteration. The red curve in Figure 1 represents the84
error observed at each LSQR point obtained by transitioning from the then-current85
LSLQ point. Note the high accuracy to which the red and blue curves match; they are86
essentially superposed. The black dot represents the error observed after transitioning87
from the final LSLQ iterate to the LSQR point. Note also that because the stopping88
rule for all methods involves the residual of the normal equations, the curves end at89
different abscissae.90

Our main objective is to exploit the reliable lower and upper bounds on the LSLQ91
error based on those developed for SYMMLQ by Estrin et al. (2016). The upper92
bound on the LSLQ errors combined with the tight relationship between LSLQ and93
LSQR leads to an upper bound on the LSQR error. Thus it becomes possible to end94
the LSLQ iterations as soon as it becomes apparent that the upper bound on the95
LSQR error is below a prescribed tolerance.96

Both problems used in Figure 1 are rank-deficient and the curves indicate that97
all methods tested identify the MLS solution. Problem small2 is included in the98
illustration because it is an example where the error plateaus. We return to this point99
in section 4.100

We do not consider LSMR further here for two reasons. First, it is a consequence of101
(Hestenes and Stiefel, 1952, Theorem 7:5) that the LSMR error is monotonic but equal102
to or larger than that of LSQR—see also (Fong and Saunders, 2012, Theorem 2.4).103
Second, LSMR is a variant of MINRES (Paige and Saunders, 1975) and we know of104
no result relating the errors along the MINRES iterations on a symmetric positive105
definite system to those along the SYMMLQ iterations.106

Notation. We use Householder notation (A, b, β for matrix, vector, scalar) with107
the exception of c and s, which denote scalars used to define reflections. Unless specified108
otherwise, }A} and }x} denote the Euclidean norm of matrix A and vector x. For109
rectangular A, we order its singular values according to σ1 ě σ2 ě ¨ ¨ ¨ ě σminpm,nq ě 0.110

For symmetric positive definite M , we define the M -norm of u via }u}2M :“ uTMu.111

2. Derivation of the method. In this section, we describe LSLQ using the112
process/method/implementation framework.113
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2.1. The Golub-Kahan process. LSLQ is based on the Golub and Kahan114
(1965) process described as Algorithm 1, with A and b as in (LS) or (LN). In line 1,115
β1u1 “ b is short for “β1 “ }b}; if β1 “ 0 then exit; else u1 “ b{β1”. Similarly for116
line 2 and the main loop. In exact arithmetic, the algorithm will terminate with117
k “ ` ď minpm,nq and either α``1 or β``1 “ 0.118

Algorithm 1 Golub-Kahan Bidiagonalization Process
Require: A, b
1: β1u1 “ b
2: α1v1 “ ATu1
3: for k “ 1, 2, . . . do
4: βk`1uk`1 “ Avk ´ αkuk
5: αk`1vk`1 “ ATuk`1 ´ βk`1vk
6: end for

We define Uk :“
“

u1 ¨ ¨ ¨ uk
‰

, Vk :“
“

v1 ¨ ¨ ¨ vk
‰

, and119

(2) Lk :“

»

—

—

—

–

α1
β2 α2

. . . . . .
βk αk

fi

ffi

ffi

ffi

fl

, Bk :“

»

—

—

—

—

—

–

α1
β2 α2

. . . . . .
βk αk

βk`1

fi

ffi

ffi

ffi

ffi

ffi

fl

“

„

Lk
βk`1e

T
k



.120

The situation after k iterations of Algorithm 1 can be summarized as121

AVk “ Uk`1Bk,(3a)122

ATUk`1 “ VkB
T
k ` αk`1vk`1e

T
k`1 “ Vk`1L

T
k`1,(3b)123124

and the identities UTk Uk “ Ik and V Tk Vk “ Ik are satisfied in exact arithmetic.125

2.2. LSLQ: method. By definition, LSLQ applied to (LS) is equivalent to126
SYMMLQ applied to (NE). The identities (3) yield127

ATAVk “ ATUk`1Bk128

“ VkB
T
k Bk ` αk`1vk`1e

T
k`1Bk129

“ VkB
T
k Bk ` αk`1βk`1vk`1e

T
k130

“ Vk`1Hk,(4)131132

where133

(5) Hk :“
„

BTk Bk
αk`1βk`1e

T
k



,134

while lines 1 and 2 of Algorithm 1 yield ATb “ α1β1v1. From here on, we use the135
shorthand136

(6) ᾱk :“ α2
k ` β

2
k`1, and β̄k :“ αkβk, k “ 1, 2, . . .137

As noted by Fong and Saunders (2011), the above characterizes the situation after138
k ` 1 steps of the Lanczos (1950) process applied to ATA with initial vector ATb. For139
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all k ě 1, we denote140

(7) Tk :“ BTk Bk “

»

—

—

—

—

–

ᾱ1 β̄2

β̄2 ᾱ2
. . .

. . . . . . β̄k
β̄k ᾱk

fi

ffi

ffi

ffi

ffi

fl

, Hk “

„

Tk
β̄k`1e

T
k



.141

Note that Tk is k-by-k and tridiagonal, and Hk is pk ` 1q-by-k.142
The k-th iteration of CG applied to (NE) computes xCk “ Vky

C
k , where yCk is the143

solution of the subproblem144

(8) Tky
C
k “ β̄1e1.145

The resulting xCk can be shown to solve the subproblem146

(9) minimize
xPKk

}x‹ ´ x}AT
A
,147

where Kk :“ SpantATb, pATAqATb, . . . , pATAqkATbu is the k-th Krylov subspace148
associated with ATA and ATb. LSQR (Paige and Saunders, 1982a,b) is equivalent149
in exact arithmetic. By contrast, the k-th iteration of SYMMLQ applied to (NE)150
computes yLk as the solution of151

(10) minimize 1
2}y

L
k }

2 subject to HT
k´1y

L
k “ β̄1e1,152

and sets xLk :“ Vky
L
k . Note that HT

k´1 is the first k´ 1 rows of Tk and may be written153
as HT

k´1 “ BTk´1Lk. It can be shown that xLk solves the subproblem154

(11) minimize
xPA

T
AKk´1

}x‹ ´ x}.155

One important distinction between (9) and (11) is that xCk P Kk while xLk P pATAqKk´1,156
a subset of Kk. By construction, }x‹ ´ xk} is monotonic along the LSLQ iterates,157
but as mentioned earlier, it also happens to be monotonic along the LSQR iterates.158
Somewhat surprisingly, the error is always smaller along the LSQR iterates than along159
the LSLQ iterates, as formalized by the next result.160

Proposition 1. Let xCk “ Vky
C
k and xLk “ Vky

L
k with yCk and yLk defined as in161

(8) and (10). Then, for all k,162

}xLk } ď }x
C
k },163

}x‹ ´ x
C
k } ď }x‹ ´ x

L
k }.164165

Proof. The result follows from applying (Estrin et al., 2016, Theorem 6) to (NE).166

Note first that Proposition 1 holds whether A has full column rank or not. Note167
also that Proposition 1 does not contradict the definition of LSLQ as minimizing the168
error because the latter is not minimized over the same subspace as that used during169
the k-th iteration of LSQR.170

In the next section we describe the implementation of LSLQ, and we return to171
the two errors in section 4.172
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2.3. LSLQ: implementation. We identify yLk by way of an LQ factorization of173
HT
k´1, which we compute via an implicit LQ factorization of Tk “ BTk Bk. As in LSQR174

and LSMR we begin with the QR factorization175

(12) PTk
“

Bk β1e1
‰

“

„

Rk gk
0 ψ1k`1



, Rk :“

»

—

—

—

—

–

γ1 δ2

γ2
. . .
. . . δk

γk

fi

ffi

ffi

ffi

ffi

fl

, gk “

»

—

–

ψ1
...
ψk

fi

ffi

fl

,176

where PTk “ Pk,k`1 . . . P2,3P1,2 is a product of orthogonal reflections. The j-th177
reflection Pj,j`1 is designed to zero out the sub-diagonal element βj`1 in Bk. With178
γ̄1 :“ α1 it may be represented as179

(13)
„

j j ` 1

j c1j s1j
j ` 1 s1j ´c1j

 „

j j ` 1

γ̄j
βj`1 αj`1



“

„

j j ` 1

γj δj`1
γ̄j`1



,180

where γj “ pγ̄2
j ` β

2
j`1q

1
2 , c1j “ γ̄j{γj , s1j “ βj`1{γj , and181

(14)
δj`1 “ s1jαj`1,

γ̄j`1 “ ´c
1
jαj`1.

182

The rotations apply to the right-hand side β1e1 to produce gk defined by the recurrence183

(15) ψ11 “ β1, ψk “ c1kψ
1
k, ψ1k`1 “ s1kψ

1
k, k “ 1, 2, . . .184

It will be convenient to use the notation g1k`1 “
“

gTk ψ1k`1
‰T .185

The QR factors of Bk give the Cholesky factorization Tk “ RTkRk. To form LQ186
factors of Tk we take the LQ factorization187

(16) Rk “ ĎMkQk, ĎMk :“

»

—

—

—

–

ε1
η2 ε2

. . . . . .
ηk ε̄k

fi

ffi

ffi

ffi

fl

.188

Initially, ε̄1 “ γ1 so that R1 “ ĎM1. We use the notation of Paige and Saunders (1975)189
to indicate that ĎMk differs from the leading k-by-k submatrix Mk of ĎMk`1 in the190
pk, kq-th element only, which is updated to εk once δk`1 “ αk`1βk`1{γk is computed.191
This results in the plane reflection Qk,k`1 defined by192

(17)
„

k k ` 1

k ε̄k δk`1
k ` 1 γk`1

 „

k k ` 1

ck sk
sk ´ck



“

„

k k ` 1

εk
ηk`1 ε̄k`1



,193

where εk “ pε̄2
k ` δ

2
k`1q

1
2 , ck “ ε̄k{εk, sk “ δk`1{εk, and194

(18)
ηk`1 “ γk`1sk,

ε̄k`1 “ ´γk`1ck.
195
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Combining (12) and (16) gives196

HT
k´1 “ BTk´1Lk “

“

BTk´1Bk´1 αkβkek´1
‰

“ RTk´1
“

Rk´1 δkek´1
‰

.197

By construction,198

Rk “

„

Rk´1 δkek´1
γk



“ ĎMkQk “

„

Mk´1 0
ηke

T
k´1 ε̄k



Qk199

and we obtain the LQ factorization200

HT
k´1 “ RTk´1

“

Mk´1 0
‰

Qk “
“

RTk´1Mk´1 0
‰

Qk.201

With the solution of HT
k´1y

L
k “ β̄1e1 in mind, we consider the system RTk tk “ α1β1e1202

and obtain tk :“
“

τ1 . . . τk
‰T by the recursion203

(19)
τ1 :“ α1β1{γ1,

τj :“ ´τj´1δj{γj , j “ 2, . . . , k.
204

We also consider the systems Mk´1zk´1 “ tk´1 and ĎMkz̄k :“ tk and obtain zk´1 :“205
“

ζ1 . . . ζk´1
‰T and z̄k “

“

zTk´1 ζ̄k
‰T by the recursion206

(20)
ζ1 “ τ1{ε1,

ζj “ pτj ´ ζj´1ηjq{εj , j “ 2, . . . , k ´ 1,
ζ̄k “ pτj ´ ζk´1ηkq{ε̄k “ ζk{ck.

207

Then yLk “ QTk

„

zk´1
0



solves (10), while yCk “ QTk z̄k solves (8).208

Now let ĎWk :“ VkQ
T
k “

“

w1 . . . wk´1 swk
‰

“
“

Wk´1 swk
‰

. Starting with209

xL1 :“ 0 and xC1 :“ 0 we obtain210

xLk “ Vky
L
k “ VkQ

T
k

„

zk´1
0



“ ĎWk

„

zk´1
0



“Wk´1zk´1 “ xLk´1 ` ζk´1wk´1,(21)211

xCk “ VkQ
T
k z̄k “ ĎWkz̄k “Wk´1zk´1 ` ζ̄k swk “ xLk ` ζ̄k swk.(22)212213

Thus, as in SYMMLQ it is always possible to transfer to the CG point. In terms of214
error, Proposition 1 indicates that transferring is always desirable.215

At the next iteration we have ĎWk`1 “ Vk`1Q
T
k`1, where216

“

swk vk`1
‰

„

ck sk
sk ´ck



“
“

wk swk`1
‰

.217

With sw1 :“ v1 this gives218

wk “ ck swk ` skvk`1,(23a)219

swk`1 “ sk swk ´ ckvk`1.(23b)220221

Because the columns of Wk´1 and ĎWk are orthonormal in exact arithmetic, we have222

}xLk }
2
“ }Wk´1zk´1}

2
“ }zk´1}

2
“

k´1
ÿ

j“1
ζ2
j “ }x

L
k´1}

2
` ζ2

k´1,(24)223

}xCk }
2
“ }xLk }

2
` ζ̄2

k .(25)224225
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2.4. Residual estimates. The k-th LSLQ residual is defined as rLk :“ b´AxLk .226
We use the definition of xLk “ Vky

L
k , (3), (12) and (16) to express it as227

rLk “ b´AVky
L
k “ Uk`1

´

β1e1 ´Bky
L
k

¯

“ Uk`1Pk

ˆ

β1P
T
k e1 ´

„

Rk
0



yLk

˙

“ Uk`1Pk

ˆ

g1k`1 ´

„

ĎMkQk
0



yLk

˙

“ Uk`1Pk

ˆ

g1k`1 ´

„

ĎMk

0

 „

zk´1
0

˙

“ Uk`1Pk

¨

˝g1k`1 ´

»

–

Mk´1zk´1
ηkζk´1

0

fi

fl

˛

‚

“ Uk`1Pk

¨

˝

»

–

gk´1
ψk
ψ1k`1

fi

fl´

»

–

tk´1
ηkζk´1

0

fi

fl

˛

‚,

228

where g1k`1 is defined in (12) and (15). It is not immediately obvious that gk´1 “ tk´1,229
but note that (12) yields

“

RTk´1 0
‰

PTk´1 “ BTk´1, so that230

RTk´1gk´1 “
“

RTk´1 0
‰

„

gk´1
ψ1k



“ BTk´1β1e1 “ α1β1e1 “ RTk´1tk´1231

as long as γk´1 ‰ 0. Therefore, if the process does not terminate, we have gk´1 “ tk´1232
as announced. By orthogonality of Uk`1 and Pk we have233

(26) }rLk }
2
“

›

›

›

›

›

›

»

–

0
ψk ´ ηkζk´1

ψ1k`1

fi

fl

›

›

›

›

›

›

2

“ pψk ´ ηkζk´1q
2
` pψ1k`1q

2.234

The residual norm for the CG-point can also be computed as235

rCk :“ b´AxCk “ Uk`1Pk

ˆ

PTk β1e1 ´

„

Rk
0



yCk

˙

“ Uk`1Pk

ˆ„

gk
ψ1k`1



´

„

Rk
0



yCk

˙

.236

The top k rows of the parenthesized expression vanish by definition of yCk , and there237
remains238

}rCk } “ pβ1P
T
k e1qk`1 “ |ψ

1
k`1|.239

To derive recurrences for the residual norm for (NE), we can use the recurrences240
derived in Paige and Saunders (1975) for SYMMLQ and CG, which become241

}AT rLk }
2
“ pγkεkq

2ζ2
k ` pδkηk´1q

2ζ2
k´1,242

}AT rCk } “ α1β1s1 ¨ ¨ ¨ sk´1sk{ck.243244

2.5. Norm and condition number estimates. Assuming orthonormality of245
Vk, (4) yields V Tk ATAVk “ BTk Bk, so that the Poincaré separation theorem ensures246
σminpAq ď σminpBkq ď σmaxpBkq ď σmaxpAq for all k, where σmin denotes the smallest247
nonzero singular value. Therefore we may use }Bk} as an estimate of }A} and condpBkq248
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Algorithm 2 LSLQ
1: β1u1 “ b, α1v1 “ ATu1 // begin Golub-Kahan process
2: δ1 “ ´1, ψ1 “ β1 // initialize variables
3: τ0 “ α1β1, ζ0 “ 0
4: c0 “ 1, s0 “ 0
5: }AT rC0 } “ α1β1
6: sw1 “ v1, xL1 “ 0
7: for k “ 1, 2, . . . do
8: βk`1uk`1 “ Avk ´ αkuk // continue Golub-Kahan process
9: αk`1vk`1 “ ATuk`1 ´ βk`1vk
10: γk “ pγ̄

2
k ` β

2
k`1q

1
2 , c1k “ γ̄k{γk, s1k “ β̄k`1{γk // continue QR factorization

11: δk`1 “ s1kαk`1
12: γ̄k`1 “ ´c

1
kαk`1

13: τk “ ´τk´1δk{γk
14: ε̄k “ ´γkck´1 // continue LQ factorization
15: ηk “ γksk´1

16: εk “ pε̄
2
k ` δ

2
k`1q

1
2 , ck “ ε̄k{εk, sk “ δk`1{εk

17: }rLk´1} “ ppψk´1c
1
k ´ ζk´1ηkq

2
` pψk´1s

1
kq

2
q

1
2

18: ψk “ ψk´1s
1
k

19: }rCk } “ ψk
20: ζk “ pτk ´ ζk´1ηkq{εk // optional: ζ̄k “ ζk{ck
21: }AT rLk } “ pγ

2
kε

2
kζ

2
k ` δ

2
kη

2
kζ

2
k´1q

1
2 // optional: }AT rCk } “ }AT rCk´1}skck´1{ck

22: wk “ ckw̄k ` skvk`1
23: swk`1 “ sk swk ´ ckvk`1
24: xLk`1 “ xLk ` ζkwk // optional: xCk “ xLk ` ζ̄k swk
25: }xLk`1}

2
“ }xLk }

2
` ζ2

k // optional: }xCk`1}
2
“ }xCk }

2
` ζ̄2

k

26: end for

as an estimate of condpAq in both the Euclidean and Frobenius norms. In particular,249
}Bk`1}

2
F “ }Bk}

2
F ` α

2
k ` β

2
k`1.250

As in (Fong and Saunders, 2011, Section 3.4), our approximation of condpAq rests251
on the QLP factorization252

PTk BkQ
T
k “

„

Mk´1 0
ηke

T
k´1 ε̄k



.253

According to Stewart (1999), the absolute values of the diagonals of the bidiagonal254
matrix above are tight approximations to the singular values of Bk. Thus we estimate255

σminpBkq « minpε1, . . . , εk´1, |ε̄k|q, σmaxpBkq « maxpε1, . . . , εk´1, |ε̄k|q,256

and condpAq « σmaxpBkq{σminpBkq, which turns out to be reasonably accurate in257
practice. If b lies in a subspace spanned by only a few singular vectors of A, iterations258
will terminate early and condpBkq will be an improving estimate of condpAV`q.259

3. Complete algorithm. The complete procedure is summarized as Algorithm 2.260
As in (Fong and Saunders, 2011, Theorem 4.2), we can prove the following.261

Theorem 2. LSLQ returns the MLS solution, i.e., it solves262

minimize
xPR

n
}x} subject to x P arg min

y
}Ay ´ b}.263
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264
4. Error estimates. In exact arithmetic, a least-squares solution x‹ is identified265

after at most ` ď minpm,nq iterations, so that x‹ “ xL``1 “
ř`
j“1 ζjwj . Because266

xLk “
řk´1
j“1 ζjwj , the error may be written as eLk “ xL``1 ´ xLk “

ř`
j“k ζjwj . By267

orthogonality, }eLk }2 “
ř`
j“k ζ

2
j . A possible stopping condition is268

(27) }xLk`1 ´ x
L
k´d}

2
“

˜

k
ÿ

j“k´d

ζ2
j

¸

1
2

ď ε}xLk`1} pk ą dq,269

where d P N is a delay and 0 ă ε ă 1 is a tolerance. The left-hand side of (27) is a270
lower bound on the error }eLk´d}.271

As we illustrate in section 6, (27) is not a robust stopping criterion because272
the lower bound may sometimes underestimate the actual error by several orders of273
magnitude. In the following sections, we develop a more robust estimate defined by274
an upper bound.275

4.1. Upper bound on the LSLQ error. Estrin et al. (2016) develop an upper276
bound on the Euclidean error along SYMMLQ iterations for a symmetric positive277
semidefinite system. The bound leads to an upper bound on the error along CG278
iterations. We now translate those estimates to the present scenario and obtain upper279
bounds on the error along LSLQ and LSQR iterations for (LS) or (38). We begin with280
an upper bound on the LSLQ error. By orthogonality, }x‹ ´ xLk }

2
“ }x‹}

2
´ }xLk }

2,281
and because }xLk }2 can be computed, an upper bound on the error will follow from an282
upper bound on }x‹}2. Assume temporarily that m ě n and that A has full column283
rank, so that ATA is nonsingular. We may express284

}x‹}
2
“ bTApATAq´2ATb “ bTAfpATAqATb,285

where fpξq :“ ξ´2 is defined for all ξ P p0, σ2
1s, and where we define fpATAq :“286

PfpΣTΣqPT with A “ QΣPT the SVD of A. In other words, if pi is the i-th column287
of P and σi is the i-th largest singular value of A,288

fpATAq “
n
ÿ

i“1
fpσ2

i qpip
T
i .289

We have from line 2 of Algorithm 1 and (6) that ATb “ β̄1v1 and therefore290

}x‹}
2
“ β̄2

1

n
ÿ

i“1
fpσ2

i qµ
2
i , µi :“ pTi v1, i “ 1, . . . , n.291

When A is rank-deficient, ATA is positive semidefinite and singular, but (NE)292
remains consistent. In addition, the MLS solution of (LS) lies in RangepAT q. Let r293
be the smallest integer in t1, . . . , nu such that σr`1 “ ¨ ¨ ¨ “ σn “ 0 and σr ą 0. Then294
rankpAq “ r “ dim RangepAT q and the smallest nonzero eigenvalue of ATA is σ2

r . By295
the Rayleigh-Ritz theorem,296

σ2
r “ min

!

}Av}2 | v P RangepAT q, }v} “ 1
)

.297

Note that each vi P RangepAT q and that (4) implies Tk “ V Tk A
TAVk in exact arith-298

metic. Hence, for all u P Rk with }u} “ 1, we have }Vku} “ 1 and uTTku “ }AVku}2 ě299
σ2
r ą 0, and each Tk is uniformly positive definite, despite the fact that ATA is singular.300
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Thus, in the rank-deficient case, ATA “
řr
i“1 σ

2
i pip

T
i . The only difference with the301

full-rank case is that the sum occurs over all nonzero singular values of A. Therefore,302
we need only redefine303

(28) fpξq :“
#

ξ´2 if x ą 0
0 if x “ 0.

304

Because each xLk and each xCk P RangepAT q, the LSLQ and LSQR iterations occur305
in RangepAT q exactly as if they were applied to the r-by-r positive-definite system306

PTr A
TAPrx̄ “ PTr A

Tb,307

where Pr “
“

p1 . . . pr
‰

and x‹ “ Prx̄. A consequence of the above discussion is308
that309

}x‹}
2
“ β̄2

1

r
ÿ

i“1
fpσ2

i qµ
2
i , µi :“ pTi v1, i “ 1, . . . , n.310

Golub and Meurant (1997) explain that the main insight is to view the previous311
sum as the Riemann-Stieltjes integral312

(29)
r
ÿ

i“1
fpσ2

i qµ
2
i “

ż σ1

σr

fpσ2
qdµpσq,313

where the piecewise constant Stieltjes measure µ is defined as314

µpσq :“

$

’

&

’

%

0 if σ ă σr
řr
j“i µ

2
j if σi ď σ ă σi`1

řr
j“1 µ

2
j if σ ě σ1.

315

Approximations to the integral via Gauss-related quadrature rules yield corresponding316
approximations to }x‹}2.317

Our main result leading to an upper bound estimate follows from a Gauss-Radau318
approximation of (29) with a fixed quadrature node in p0, σ2

rq. We begin with a319
paraphrase of (Estrin et al., 2016, Theorem 2).320

Proposition 3. Suppose f : R Ñ R is such that f p2j`1q
pξq ă 0 for all ξ P321

pσ2
r , σ

2
1q and all j ě 0. Fix σest P p´σr, σrq, σest ‰ 0. Let Tk be the tridiagonal322

generated after k steps of Algorithm 1 and $k P C be chosen so that the smallest323
eigenvalue of324

rTk :“
„

Tk´1 β̄kek´1
β̄ke

T
k´1 α2

k `$
2
k



325

is precisely σ2
est. Then,326

bTAfpATAqATb ď β̄2
1e
T
1 fp rTkqe1.327

In particular, Proposition 3 applied to f defined in (28) provides an upper bound328
on }x‹}2.329

Note that the Poincaré separation theorem ensures that the smallest eigenvalue of330
each Tk´1 is at least σ2

r and that the Cauchy interlace theorem guarantees that the331
smallest eigenvalue of rTk is smaller than or equal to that of Tk´1. Thus it is possible332
to choose $k satisfying the requirements of Proposition 3.333
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We now comment on the surprising fact that $k P C in Proposition 3. To avoid334
forming Tk and rTk explicitly, we would prefer to pick a nonzero σest P p0, σrq and seek335
$k such that σest is the smallest singular value of336

(30) rBk “

„

Lk
$ke

T
k



.337

The fact that $k P C is a departure from the computations of Estrin et al. (2016),338
who establish that the last diagonal of rTk is real: α2

k `$2
k P R. In order for $2

k to339
be real, $k must be either real or purely imaginary. In a numerical implementation340
of (30), although it is possible to avoid computations in complex arithmetic, we do341
observe corrections $k such that the last diagonal is strictly less than α2

k, i.e., such342
that $k is purely imaginary.343

An alternative strategy that avoids complex numbers altogether is to pick a344
nonzero σest P p0, σrq and seek ωk such that σest is the smallest singular value of345

(31) rRk “

„

Rk´1 δkek´1
ωk



.346

Note that rRk differs from Rk, the R factor in the QR factors of Bk, in the pk, kq-th347
entry only. In addition, if rRk is the Cholesky factor of rTk, its diagonals are guaranteed348
to be real and positive and the smallest eigenvalue of rTk will be σ2

est.349
As earlier, the Poincaré separation theorem guarantees that the singular values350

of each Rk´1, which are the same as those of Bk´1, lie between σr and σ1, and the351
Cauchy interlace theorem for singular values guarantees that it is indeed possible352
to choose ωk so that the smallest singular value (31) is σest. We may now restate353
Proposition 3 with the above in mind.354

Theorem 4. Suppose f : RÑ R is such that f p2j`1q
pξq ă 0 for all ξ P pσ2

r , σ
2
1q355

and all j ě 0. Fix σest P p0, σrq. Let Bk be the bidiagonal generated after k steps356
of Algorithm 1 and ωk ą 0 be chosen so that the smallest singular value of (31) is357
precisely σest. Then,358

bTAfpATAqATb ď β̄2
1e
T
1 fp rR

T
k
rRkqe1.359

In order to determine ωk, we follow Golub and Kahan (1965) and embed rRk into360
a larger symmetric matrix to change the singular value problem into an eigenvalue361
problem. Indeed,362

(32)
«

0 rRk
rRTk 0

ff

363

has eigenvalues ˘σip rRkq. Define364

Y2k´2 :“

»

—

—

—

—

—

—

—

—

—

—

–

0 γ1
γ1 0 δ2

δ2 0 γ2
γ2 0 δ3

δ3 0
. . .

. . . . . . γk´1
γk´1 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, rY2k :“

»

–

Y2k´2 δke2k´2
δke

T
2k´2 0 ωk

ωk 0

fi

fl .365
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Note that rY2k is a symmetric permutation of (32) and therefore shares the same eigen-366

values. If σest is an eigenvalue of rY2k and hp2kq “
“

θ1 . . . θ2k
‰T is a corresponding367

eigenvector, then prY2k ´ σestIqh
p2kq

“ 0; that is,368
»

–

Y2k´2 ´ σestI δke2k´2
δke

T
2k´2 ´σest ωk

ωk ´σest

fi

fl

»

–

h
p2kq
2k´2
θ2k´1
θ2k

fi

fl “ 0.369

Necessarily, θ2k´1 ‰ 0 because otherwise hp2kq “ 0 entirely. Thus we may fix θ2k´1 “ 1.370

The first block equation reads pY2k´2´σestIqh
p2kq
2k´2 “ ´δke2k´2. Let θ2k´2 be the last371

entry of hp2kq2k´2, which can be computed by updating the QR factors of Y2k´2 as in372
(Estrin et al., 2016).373

In order to compute ωk, note that the last two equations,374

„

δk ´σest ωk
ωk ´σest



»

–

θ2k´2
1
θ2k

fi

fl “ 0,375

imply that ωk “
b

σ2
est ´ σestδkθ2k´2.376

With ωk computed, we have rRTk rRk “ rTk. We are now interested in efficiently377
computing the upper bound378

(33) }x‹}
2
ď β̄2

1e
T
1 fp rR

T
k
rRkqe1 “ β̄2

1e
T
1 p rR

T
k
rRkq

´2e1.379

The LQ factorization rRk “ ĂMk
rQk provides the LQ factorization rTk “ rRTk ĂMk

rQk,380
which in turn yields381

}x‹}
2
ď

›

›

›
β̄1ĂM

´1
k

rR´Tk e1

›

›

›

2
“ }ĂM´1

k t̃k}
2
“ }z̃k}

2,382

where we define t̃k and z̃k from rRTk t̃k “ β̄1e1 and ĂMkz̃k “ t̃k as in (Estrin et al., 2016).383
We determine the LQ factorization rRk “ ĂMk

rQk from384

rRk “

„

Rk´1 δkek´1
ωk



“

„

Mk´1
rηke

T
k´1 rεk

 „

Qk´1
1



.385

Thus rQk “ Qk and ĂMk differs from Mk in the pk, k ´ 1q-th and pk, kq-th entries only,386
which become387

rηk “ ωksk´1, rεk “ ´ωkck´1.388

Recalling the definition of tk in (19) and zk´1 in (20) we observe that389

(34) t̃k “

„

tk´1
τ̃k



and z̃k “

„

zk´1
rζk



,390

where391

(35) rτk “ ´τk´1δk{ωk “ τkγk{ωk and rζk “ prτk ´ rηkζk´1q{rεk.392

From (24) and orthogonality of Wk we now have393

(36) }x‹ ´ x
L
k }

2
“ }x‹}

2
´ }xLk }

2
ď }zk´1}

2
` rζ2

k ´ }zk´1}
2
“ rζ2

k .394
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4.2. Upper bound on the LSQR error. Obtaining an upper bound on the395
LSQR error is of interest for two reasons. First, LSLQ may transfer to the LSQR396
point at any iteration using a simple vector operation—see (22). Second, LSQR always397
produces a smaller error, as formalized by Proposition 1.398

Based on Proposition 1, we wish to use the upper bound (36) and the transition399
(22) to the LSQR point to terminate LSLQ early and obtain an iterate with an error400
below a prescribed level. Evidently the same upper bound (36) could be used, but401
Estrin et al. (2016) provide the improved bound402

(37) }x‹ ´ x
C
k }

2
ď rζ2

k ´ ζ̄
2
k ,403

where ζ̄k is defined in (20) and rζk is in (35).404

5. Regularization. LSLQ may be adapted to solve the regularized least-squares405
problem406

(38) minimize
xPR

n

1
2

›

›

›

›

„

A
λI



x´

„

b
0


›

›

›

›

2
,407

where λ ě 0 is a given regularization parameter. The optimality conditions (NE)408
become409

(39) pATA` λ2Iqx “ ATb.410

If we run Algorithm 1 on A only, we will produce the factorization411

(40)
„

A
λI



Vk “

„

Uk`1
Vk

 „

Bk
λI



,412

which we can compare to the factorization achieved when running Algorithm 1 on the413
entire regularized system,414

(41)
„

A
λI



Vk “ Ûk`1B̂k “ Ûk`1

»

—

—

—

—

–

α̂1

β̂2
. . .
. . . α̂k

β̂k`1

fi

ffi

ffi

ffi

ffi

fl

.415

Note that Vk will remain unchanged, as can be seen from the equivalence between the416
Golub-Kahan process and the Lanczos process on the normal equations (Saunders,417
1995). Given B̂k, we could run the non-regularized LSLQ algorithm (using α̂ and β̂418
instead of α and β) to obtain all of the desired iterates and estimates. The idea is419
therefore to compute Bk via Golub-Kahan on pA, bq, cheaply compute each α̂k and420
β̂k and use them in place of αk and βk in the rest of the algorithm. For k “ 3, the421
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factorization proceeds according to422

(42)

»

—

—

—

—

—

—

—

—

–

α1
β2 α2

β3 α3
β4

λ
λ

λ

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Ñ

»

—

—

—

—

—

—

—

—

–

α1
β̂2 α̂2

β3 α3
β4

λ̂2
λ

λ

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Ñ

»

—

—

—

—

—

—

—

—

–

α1
β̂2 α̂2

β3 α3
β4

λ2
λ

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Ñ

»

—

—

—

—

—

—

—

—

–

α1
β̂2 α̂2

β̂3 α̂3
β4

λ̂3
λ

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Ñ

»

—

—

—

—

—

—

—

—

–

α1
β̂2 α̂2

β̂3 α̂3
β4

λ3

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Ñ

»

—

—

—

—

—

—

—

—

–

α1
β̂2 α̂2

β̂3 α̂3
β̂4

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

423

We use βk`1 to zero out λk, which transforms αk`1 into α̂k`1 and introduces a nonzero424
λ̂k`1 above λ in the next column. We then use a second reflection to zero out λ̂k`1425
using λ, which produces λk`1. With λ1 “ λ, the recurrences for k ě 2 are426

(43)

β̂k`1 “ pβ
2
k`1 ` λ

2
kq

1
2 ,

cLk “ βk`1{β̂k`1,

sLk “ λk{β̂k`1,

α̂k`1 “ cLkαk`1,

λ̂k`1 “ sLkαk`1,

λk`1 “ pλ
2
` λ̂2

k`1q
1
2 .

427

With λ ą 0, the operator of (38) has full column rank, i.e., r “ n, and satisfies428
σn ě λ. Theorem 4 then states that we should select σest P p0, λq.429

6. Numerical experiments. In the experiments reported here, the exact solu-430
tion of (LS) was computed as the MLS solution using a complete orthogonal decom-431
position of A via the Factorize package (Davis, 2013). The horizontal axis in plots432
represents iterations, each involving a product with A and a product with AT. LSLQ433
is implemented in the Julia language (julialang.org) and is available as part of the434
Krylov.jl suite of iterative methods (Orban, 2017). Subsection 6.1 and subsection 6.2435
document our results on problems from the animal breeding test set and on the seismic436
inversion problem described in section 1, respectively. Although all test problems437
are over-determined, the solvers apply to systems of any shape. We have observed438
qualitatively similar results for square and underdetermined systems.439

6.1. Problems from the animal breeding test set. In this section, we use440
test problems from the animal breeding collection of Hegland (1990, 1993). These441
over-determined problems have rank-deficiency 1, come in two flavors and sizes, and442
have accompanying right-hand sides. In the first flavor, a single parameter is fitted443
per animal, while in the second flavor, two parameters are fitted per animal and A444
has twice as many rows and columns. The nonzero columns of A are scaled to have445
unit Euclidean norm.446

http://julialang.org
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Fig. 2. Error along the LSLQ iterations on problems large and large2 from the animal breeding
set. The red and blue curves show the lower bounds with d “ 5 and d “ 10.

We found that generating the problems from the original archive requires a small447
amount of corrections to the programs and several compilation steps. Because we feel448
that the problems from this set are generally useful as least-squares test problems,449
we have created an archive containing the problems as well as the MLS solutions450
corresponding to the scaled problems in Rutherford-Boeing format (Duff, Grimes,451
and Lewis, 1997). Our repository can be accessed at github.com/optimizers/animal452
(Orban, 2016).453

We begin with an illustration of the non-robust lower bound (27) based on a454
delay d. Figure 2 plots the actual LSLQ error along with the lower bound with delay455
(window size) d “ 5 and 10 iterations for problems large and large2 (larger versions456
of the problems used in Figure 1). The behavior seen is typical. As in the left-hand457
plot, the lower bound tends to follow the exact error curve tightly when the latter is458
strictly decreasing. But as the right-hand plot shows, it tends to underestimate the459
actual error by several orders of magnitude when the latter plateaus, and requires a460
fair number of iterations to recover, rendering the stopping test unreliable by itself. In461
both plots, the stopping test used is (27) with ε “ 10´10. The curves for d “ 5 and 10462
are almost the same.463

Figure 3 illustrates the behavior of our upper bound (36) on problems large and464
large2 with regularization: a typical scenario for rank-deficient problems whose smallest465
nonzero singular value is unknown. For a given value λ ‰ 0, the smallest singular466
value of the regularized A is σn “ |λ|. Estrin et al. (2016) show numerically that the467
upper bound is tighter when |σest| is closer to |σn|, but they do not consider the effect468
of regularization. To simplify the discussion, we consider only positive values of λ. For469
each value of λ ą 0, we set σest :“ p1´ 10´10

qλ and measure the error with respect470
to the solution of the regularized problem.471

We observe from Figure 3 that increasing λ (and hence σest) substantially improves472
the quality of the upper bound. The reason may be that rTk is moved further away from473
singularity. In the case of large2 with λ “ 10´2, the upper bound is exceptionally tight474
after about 100 iterations. As λ decreases, the upper bound deteriorates, although it475
remains a potentially useful bound as long as λ ‰ 0.476

In Figure 4, we compute the bound (37) on the error along the LSQR iterates or,477
equivalently, along the LSQR points obtained by transitioning from a corresponding478
LSLQ point. As with LSLQ, the quality of the LSQR upper bound deteriorates479
when A, or its regularization, approaches rank-deficiency. The LSQR bound appears480

https://github.com/optimizers/animal
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Fig. 3. Error along the LSLQ iterations on problems large and large2 with regularization. The
red and blue curves show the lower bounds with d “ 5 and d “ 10. The cyan curve shows the upper
bounds for λ “ 10´4 (top) and λ “ 10´2 (bottom).

somewhat looser than the LSLQ bound, although Estrin et al. (2016) note that it481
could be tightened by incorporating an additional term along a moving window to the482
right-hand side of (37).483

The next experiment illustrates the upper bounds for rank-deficient problems when484
we have knowledge of σr. A sparse SVD reveals that the smallest nonzero singular485
value after scaling is approximately σr “ σn´1 « 0.0498733 for problem small and486
σr “ σn´1 « 0.00499044 for small2. In each case, we set σest “ p1´ 10´10

qσn´1. In487
practice, one may need to underestimate further in order to account for inaccurate σr.488

As the error bounds in Figure 5 are quite tight, it seems important to supply an489
estimate of σr in rank-deficient problems if such knowledge is available. In Figure 5,490
LSLQ stops as soon as the upper bound on the LSQR error falls below 10´10

}xCk }.491

6.2. The seismic inverse problem. The least-squares problem arising from492
the PDE-constrained optimization problem described in section 1 has the form493

(44) minimize
xPR

n

1
2

›

›

›

›

„

ρA
P



x´

„

ρq
d


›

›

›

›

2
,494

where ρ “ 0.1 is fixed, A is a square 5-point stencil discretization of a Helmholtz495
operator, P is a sampling operator (some rows of the identity), and q and d are fixed496
vectors. We experimented with a case in which n “ 83, 600 and P has 248 rows. The497
columns of the operator were not scaled as in the previous section, as that reduced498
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Fig. 4. Error along the LSQR iterations on problems large and large2 with regularization. The
cyan curve shows the upper bounds for σest “ 10´4 (top) and σest “ 10´2 (bottom).

the performance of LSLQ. A complete orthogonal decomposition, used to compute the499
exact solution, reveals that the operator of (44) has full rank but its smallest nonzero500
singular value is Op10´6

q. A partial sparse SVD suggests that there are several small501
singular values. To obtain upper error bounds, it was necessary to set σest “ 10´7 to502
avoid domain errors in computing the square root in the expression for ωk preceding503
(33). The left plots of Figure 6 illustrate the upper and lower bounds on the error504
and the large number of iterations needed to decrease the error by a factor of 1010.505
The bounds on the LSLQ and LSQR errors nonetheless track the exact errors quite506
accurately, with the upper bound on the LSQR error overestimating by one or two507
orders of magnitude. Though the factor 1010 is far too demanding in practice, it508
illustrates that many iterations are likely when there are many tiny singular values.509
The situation is similar when the problem is regularized and the error is measured with510
respect to the exact solution of the original, unregularized, problem. The right plots of511
Figure 6 show the bounds in the presence of modest regularization λ when the error is512
computed with respect to the exact solution of the regularized problem. Dramatically513
fewer iterations are needed to achieve a corresponding decrease in the error. Note514
the remarkable tightness of the LSLQ and LSQR bounds, with the LSQR upper515
bound consistently overestimating by about one order of magnitude. The improved516
performance on the regularized problem suggests that a regularized optimization517
approach, such as that of Arreckx and Orban (2016), could be appropriate.518
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Fig. 5. Error along the LSLQ and LSQR iterations on problems small and small2 without
regularization. Both problems have rank-deficiency 1.

7. Discussion. LSLQ is an iterative method for the least-squares and least-519
norm problems (LS) and (LN) with the attractive property that it ensures monotonic520
reduction in the Euclidean error }x´ xk}2. In deriving it we have completed the triad521
of solvers LSQR, LSMR, LSLQ for problem (LS) based on the Golub and Kahan (1965)522
process. They are mathematically equivalent to the symmetric solvers CG, MINRES,523
SYMMLQ on (NE) but are numerically more reliable when A is ill-conditioned.524

Although the Euclidean error for LSQR is provably better at each iterate, it is525
possible to develop cheaply computable lower and upper bounds on the error for LSLQ.526
The intimate relationship between the methods, analogous to that between CG and527
SYMMLQ (Estrin et al., 2016), provides a corresponding upper bound on the LSQR528
error at each iteration. Such an upper bound was not previously available. It may be529
used in a stopping criterion to terminate LSLQ and transfer to the LSQR point.530

Strakoš and Tichý (2002) justify the adequacy of A-norm error estimates for CG531
by way of a finite-precision arithmetic analysis. The upper bounds described in the532
present paper assume exact arithmetic and orthogonality of the Golub-Kahan bases. In533
the numerical experiments, our aim has been to observe if the theoretical upper bounds534
remain upper bounds in practice. They appear to do so up to the point of convergence,535
as they do for CG and SYMMLQ. We conclude that a future finite-precision analysis536
is justified.537

Fong and Saunders (2012, Table 5.1) summarize the monotonicity of various538
quantities related to the LSQR and LSMR iterations. Table 1 is similar but focuses539
on LSQR and LSLQ.540
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Fig. 6. Error along the LSLQ and LSQR iterations on the seismic inverse problem without
regularization (left) and with regularization (right).

Table 1
Comparison of LSQR and LSLQ properties on a linear least-square problems min }Ax´ b}.

LSQR LSLQ
}xk} Õ (F, 2011, Theorem 3.3.1) Õ (PS, 1975), ď LSQR (Proposition 1)
}x‹ ´ xk} Œ (F, 2011, Theorem 3.3.2) Œ (PS, 1975), ě LSQR (Proposition 1)
}r‹ ´ rk} Œ (F, 2011, Theorem 3.3.3) not-monotonic
}rk} Œ not-monotonic
}A

T
rk} not-monotonic not-monotonic

xk converges to MLS on column-rank-deficient problems
Õ monotonically increasing Œ monotonically decreasing

F (Fong, 2011), PS (Paige and Saunders, 1975)

Saunders, Simon, and Yip (1988) develop the USYMLQ method based on an541
orthogonal tridiagonalization process that applies to square systems. USYMLQ only542
applies to consistent systems and, analogous to SYMMLQ, reduces the Euclidean543
error monotonically. Because the orthogonal tridiagonalization process reduces to the544
Lanczos (1950) process in the symmetric case, USYMLQ applied to (NE) must be545
equivalent to SYMMLQ applied to (NE), and therefore to LSLQ applied to (LS), in546
exact arithmetic. However, applying USYMLQ to (NE) would perform redundant547
work and require two products with ATA per iteration.548
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7.1. A generalization. LSLQ may be generalized to the solution of symmetric549
quasi-definite systems (Vanderbei, 1995) of the form550

(45)
„

M A

AT ´N

 „

r
x



“

„

b
0



,551

where M “ MT and N “ NT are positive definite. Indeed (45) represents the552
optimality conditions of553

(46) minimize
xPR

n

1
2

›

›

›

›

„

A
I



x´

„

b
0


›

›

›

›

2

E

,554

where E “ blkdiagpM´1, Nq. Under the assumption that solves with M and N can555
be performed cheaply, which is the case in certain optimization schemes and fluid556
flow simulations (Orban and Arioli, 2017), it suffices to replace the Golub-Kahan557
process (Algorithm 1) with its preconditioned variant, stated as (Orban and Arioli,558
2017, Algorithm 4.2), and to set the regularization parameter λ “ 1.559

Note that (45) also represents the optimality conditions of the least-norm problem560

(LN2) minimize
xPR

n
, sPR

m

1
2 p}r}

2
M ` }x}2N q subject to Mr `Ax “ b.561

We may construct a companion method to LSLQ that solves (LN2) by implicitly562
applying SYMMLQ to the normal equations of the second kind, which in this case are563

(NE2) pAN´1AT `Mqr “ b, Nx “ ATr.564

This variant, let us call it LNLQ, is to LSLQ as the method of Craig (1955) is to565
LSQR. Following the same reasoning as Saunders (1995) and Orban and Arioli (2017),566
it appears possible to show that applying SYMMLQ to (45) with preconditioner567
blkdiagpM, Nq is equivalent to applying LSLQ to (46) and LNLQ to (LN2) simulta-568
neously. If so, SYMMLQ applied to (45) would perform twice the work by solving the569
two equivalent problems (NE) and (NE2) simultaneously, making a solver for (LN2)570
worthwhile. An implementation of LNLQ is the subject of ongoing work.571
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