16

[V

NN N NN
Tt = W N

(=3

Cahier du GERAD G-2018-05

LSLQ: AN ITERATIVE METHOD FOR LINEAR LEAST-SQUARES
WITH AN ERROR MINIMIZATION PROPERTY™

RON ESTRIN', DOMINIQUE ORBAN*, AND MICHAEL A. SAUNDERS®

Abstract. We propose an iterative method named LSLQ for solving linear least-squares problems
of any shape. The method is based on the Golub and Kahan (1965) process, where the dominant cost
is products with the linear operator and its transpose. In the rank-deficient case, LSLQ identifies
the minimum-length least-squares solution. LSLQ is formally equivalent to SYMMLQ applied to the
normal equations, so that the current estimate’s Euclidean norm increases monotonically while the
associated error norm decreases monotonically. We provide lower and upper bounds on the error in
the Euclidean norm along the LSLQ iterations. The upper bound translates to an upper bound on the
error norm along the LSQR iterations, which was previously unavailable, and provides an error-based
stopping criterion involving a transition to the LSQR point. We report numerical experiments on
standard test problems and on a full-wave inversion problem arising from geophysics in which an
approximate least-squares solution corresponds to an approximate gradient of a relevant penalty
function that is to be minimized.

1. Introduction. We propose an iterative method (LSLQ) for solving two ubiqui-
tous problems in computational science—the least-squares problem and the least-norm
problem:

(LS) minimize %HA@‘ — bHQ,
zeR"

(LN) minimize %HxHZ subject to Az = b,
zeR"

both of which include consistent linear systems Ax = b as a special case. The norm
| - |l is Euclidean and A may be an m-by-n matrix, but we assume more generally that
A:R" — R™ is a linear operator because only operator-vector products of the form
Au and A™v are required. We often refer to the optimality conditions of (LS), namely
the normal equations

(NE) ATAz = A"

When Ax = b is consistent, LSLQ identifies a solution of (LN). If rank(A) < n, LSLQ
finds the minimum-length solution (MLS) z, = ATb, where A" is the pseudoinverse.

Motivation: monitoring the error. We briefly describe why an iterative
method for least squares with an error minimization property is of interest.

Van Leeuwen and Herrmann (2013) describe a penalty method for PDE-constrained
optimization in the context of a seismic inverse problem. The penalty objective
$,(m,u) depends on the control variable m and the wavefields u, where p > 0 is
a penalty parameter. For fixed values of p and m, the wavefields u(m) satisfying

*Version of January 11, 2018.

Mnstitute for Computational and Mathematical Engineering, Stanford University, Stanford, CA,
USA. E-mail: restrin@stanford.edu.

1GERAD and Department of Mathematics and Industrial Engineering, Ecole Polytechnique,
Montréal, QC, Canada. E-mail: dominique.orban@gerad.ca. Research partially supported by an
NSERC Discovery Grant.

§Systems Optimization Laboratory, Department of Management Science and Engineering, Stanford
University, Stanford, CA, USA. E-mail: saunders@stanford.edu. Research partially supported by

the National Institute of General Medical Sciences of the National Institutes of Health, award
U01GM102098.

mailto:restrin@stanford.edu
mailto:dominique.orban@gerad.ca
mailto:saunders@stanford.edu

43

W N RO © 0O O

SRR S MY SIS B B IS < S S S B)
= 3 © a3 a A

3

63
64
65
66

67

(o2 3]

LI R

0 00 0 =1 =~ =~ = = 1 =1 ~J ~ =
R3S © w c

83

2 R. ESTRIN, D. ORBAN, AND M. SAUNDERS [Toc]

Vu¢,(m,u(m)) = 0 can be found as the solution of a linear least-squares (LS) problem
in u. The gradient of ¢ with respect to m is subsequently expressed as a linear function
of u(m), say

vm(bp(mv u(m)) = Gu(m> -9

for a certain matrix G and vector g. Assume now that an inexact solution 1 of the LS
problem for u(m) is determined. The error in u translates directly into an error in
the gradient of the penalty function, for

(1) “vm(bp(m:u) - vm¢p(m7ﬁ)” < HGH ”11 - ﬁ“a u= u(m)

If a derivative-based optimization method is to be used to minimize the penalty
function, there is interest in a method to approximate u in which the error is monoton-
ically decreasing. Indeed, the convergence properties of derivative-based optimization
methods are not altered provided the gradient is computed sufficiently accurately in
the sense that the left-hand side of (1) is sufficiently small compared to |V, ¢,(m, u)|
(Conn, Gould, and Toint, 2000, §8.4.1.1).

In the following sections, we introduce the LSLQ method. We now comment on
the necessity for LSLQ in order to monitor the error reliably. At this stage, it is
sufficient to say that LSLQ applied to problem (LS) is equivalent to SYMMLQ (Paige
and Saunders, 1975) applied to (NE). LSLQ fits in the category of Krylov-subspace
methods based on the Golub and Kahan (1965) process, and in that sense is related to
LSQR (Paige and Saunders, 1982a) and LSMR (Fong and Saunders, 2011) (equivalent
to CG and MINRES applied to (NE)). As far as error monitoring is concerned, the
key advantage that LSLQ inherits from SYMMLQ is that the solution estimate is
updated along orthogonal directions. As a consequence, the solution norm increases
and the error decreases along the iterations. It happens that both LSQR and LSMR
share those properties (Fong and Saunders, 2012, Table 5.2) but with important
differences. First, LSLQ’s orthogonal updates suggest error lower and upper bounds
initially developed for SYMMLQ by Estrin, Orban, and Saunders (2016), and which
are the subject of section 4. Second, the error is minimized in LSLQ, while it is only
monotonic in LSQR and LSMR. In spite of the latter observation, the error along
the LSQR and LSMR iterations is typically smaller than for the LSLQ iterations by
a few orders of magnitude—see Proposition 1. This is not a contradiction because
LSLQ minimizes the error in a transformation of the Krylov subspace. Figure 1
illustrates a typical scenario, where the error is represented along the LSQR, LSMR,
and LSLQ iterations on two over-determined problems arising from an animal breeding
application (Hegland, 1990, 1993), and where we consider that the solution obtained
with a complete orthogonal decomposition is the exact solution.

It appears from Figure 1 that LSQR is more appealing than LSLQ if one is
interested in minimizing the error. The difficulty is that LSQR does not lend itself
to obvious error lower and upper bounds because it is not naturally formulated in
terms of the Euclidean norm and its solution estimate is not updated along orthogonal
directions. Estimates of the error in the conjugate gradient (CG) method (Hestenes
and Stiefel, 1952) applied to a symmetric and positive definite system have been
developed in the literature, an effort led chiefly by Meurant (2005). Those estimates
could be applied to LSQR but unfortunately they are only estimates and have not
been proved to be lower or upper bounds. Thus it is difficult to terminate the LSQR
iterations reliably with a guaranteed error level. Fortunately, SYMMLQ is closely
related to CG and it is possible to transition cheaply from a SYMMLQ iterate to a
corresponding CG iterate. LSLQ inherits that property and it is possible to transition

84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

107
108
109
110

112
113

[Toc] LSLQ 3

small: 3140 x 1988 small2: 6280 x 3976

— LSQR 106d
LSMR

= LSLQ
—— LSLQ-CG 102
@® LSQR point

10-2 4

-4 |
10 = [SQR

LSMR
= LSLQ
= LSLQ-CG

@ LSQR point

10-6 4

T T T T T T T T T T T T T
0 50 100 150 200 0 50 100 150 200 250 300 350

F1a. 1. Error along the LSQR, LSMR and LSLQ iterations on problems small and small2 from
the animal breeding set. The red curve corresponds to the LSQR iterates generated as a by-product
during the LSLQ iterations. The horizontal azis represents the number of iterations (each involving

a product with A and a product with AT).

to a related LSQR iterate at any iteration. The red curve in Figure 1 represents the
error observed at each LSQR point obtained by transitioning from the then-current
LSLQ point. Note the high accuracy to which the red and blue curves match; they are
essentially superposed. The black dot represents the error observed after transitioning
from the final LSLQ iterate to the LSQR point. Note also that because the stopping
rule for all methods involves the residual of the normal equations, the curves end at
different abscissae.

Our main objective is to exploit the reliable lower and upper bounds on the LSLQ
error based on those developed for SYMMLQ by Estrin et al. (2016). The upper
bound on the LSLQ errors combined with the tight relationship between LSLQ and
LSQR leads to an upper bound on the LSQR error. Thus it becomes possible to end
the LSLQ iterations as soon as it becomes apparent that the upper bound on the
LSQR error is below a prescribed tolerance.

Both problems used in Figure 1 are rank-deficient and the curves indicate that
all methods tested identify the MLS solution. Problem small2 is included in the
illustration because it is an example where the error plateaus. We return to this point
in section 4.

We do not consider LSMR further here for two reasons. First, it is a consequence of
(Hestenes and Stiefel, 1952, Theorem 7:5) that the LSMR error is monotonic but equal
to or larger than that of LSQR—see also (Fong and Saunders, 2012, Theorem 2.4).
Second, LSMR is a variant of MINRES (Paige and Saunders, 1975) and we know of
no result relating the errors along the MINRES iterations on a symmetric positive
definite system to those along the SYMMLQ iterations.

Notation. We use Householder notation (A, b, 8 for matrix, vector, scalar) with
the exception of ¢ and s, which denote scalars used to define reflections. Unless specified
otherwise, |A| and |z| denote the Euclidean norm of matrix A and vector x. For
rectangular A, we order its singular values according to o > 03 = +++ = Tpin(m,n) = 0.

For symmetric positive definite M, we define the M-norm of u via |ul3; := v Mu.

2. Derivation of the method. In this section, we describe LSLQ using the
process/method /implementation framework.

114
115
116
117

119

120

122
134
125

126
127

128

129

135
136

137

138
139

4 R. ESTRIN, D. ORBAN, AND M. SAUNDERS [Toc]

2.1. The Golub-Kahan process. LSLQ is based on the Golub and Kahan
(1965) process described as Algorithm 1, with A and b as in (LS) or (LN). In line 1,
Biuy = b is short for “B; = ||b]; if 8; = 0 then exit; else u; = b/B;”. Similarly for
line 2 and the main loop. In exact arithmetic, the algorithm will terminate with
k = ¢ < min(m,n) and either o, or B, =0.

Algorithm 1 Golub-Kahan Bidiagonalization Process
Require: A, b

1: /81u1 == b
2: 0517}1 = ATUI
3: fork=1,2,...do
4 Brr1Unir = A;{k — QU
5: Qpg1Vpg1 = AU — Brp1vi
6: end for
We define Uy, := [u1 uk], V, = [111 Uk], and
aq
aq
«
By ay B2 2 L,
(2) Ly:= . , By= = T|-
.. -, Brt1€k
Br &9
Br g
Br+1

The situation after k iterations of Algorithm 1 can be summarized as

(3a) AV = U1 By,

(3b) ATUk+1 = VkBg + Ckk+1’l)k+16£+1 = Vk+1L£+1,

and the identities U, kT U, = I, and VkTVk = I;, are satisfied in exact arithmetic.
2.2. LSLQ: method. By definition, LSLQ applied to (LS) is equivalent to
SYMMLQ applied to (NE). The identities (3) yield
ATAVk - ATUk+1Bk
= VBl By, + ak+1vk+1e£+1Bk

T T
= Vi By, By, + 01 Br 110k 416k

(4) :Vk+1Hka
where
BI'B
(5) H—[k B T],
gy 1Bk+1€k

while lines 1 and 2 of Algorithm 1 yield ATy = «a1fv;. From here on, we use the
shorthand

(6) ap = ap + Beyr, and By = apby, k=1,2,...

As noted by Fong and Saunders (2011), the above characterizes the situation after
k + 1 steps of the Lanczos (1950) process applied to ATA with initial vector A”b. For

140

142
143
144

145

148
149
150
151

P S
(S SN G B |
o

J—

161
162

163

166

167
168
169
170
171
172

[Toc] LSLQ

ot

all £ > 1, we denote

Qg - T;
(7) T := By By, = b @ , Hk:[— kT].
L. ha Br+1€k
o B
Bre Qg
Note that Tj, is k-by-k and tridiagonal, and Hj, is (k + 1)-by-k.
The k-th iteration of CG applied to (NE) computes xkc = ka,ﬁ’, where yg is the
solution of the subproblem

(8) Tyyi = Bier.
The resulting xkc can be shown to solve the subproblem

(9) miilei’rcriize |z, — || 47 45

where K, := Span{A’b, (ATA)A™b, ..., (ATA)*A"b} is the k-th Krylov subspace
associated with A74 and A"b. LSQR (Paige and Saunders, 1982a,b) is equivalent
in exact arithmetic. By contrast, the k-th iteration of SYMMLQ applied to (NE)
computes y,f as the solution of

(10) minimize %Hy;f\ﬁ subject to Hf_ yr = Biey,

and sets wﬁ = ka,f. Note that Hg_l is the first k — 1 rows of 7}, and may be written
as HkT,l = BkT,lLk. It can be shown that xﬁ solves the subproblem

(11) minimize |z, — z|.
zeATAK,

One important distinction between (9) and (11) is that z§ € K while 2 € (ATA)K,,_,,
a subset of K. By construction, ||z, — x| is monotonic along the LSLQ iterates,
but as mentioned earlier, it also happens to be monotonic along the LSQR iterates.
Somewhat surprisingly, the error is always smaller along the LSQR iterates than along
the LSLQ iterates, as formalized by the next result.

ProproSITION 1. Let :z:kC = ka,? and xﬁ = ka,f with y;co and y,f defined as in
(8) and (10). Then, for all k,

Proof. The result follows from applying (Estrin et al., 2016, Theorem 6) to (NE).O

Note first that Proposition 1 holds whether A has full column rank or not. Note
also that Proposition 1 does not contradict the definition of LSLQ as minimizing the
error because the latter is not minimized over the same subspace as that used during
the k-th iteration of LSQR.

In the next section we describe the implementation of LSLQ, and we return to
the two errors in section 4.

176

177
178
179

180

181

182

188

189
190
191
192

193

194

195

6 R. ESTRIN, D. ORBAN, AND M. SAUNDERS [Toc]

2.3. LSLQ: implementation. We identify y,f by way of an LQ factorization of
H ;CT_l, which we compute via an implicit LQ factorization of T}, = BZB,C. As in LSQR
and LSMR we begin with the QR factorization

Y1 0o
R Yoo o V1
(12) PI? [Bk 5161] = [Ok w‘Zil] , Ry := . ' coge=1

Ok Uy,
Vi

where P} = Py jy1... P3P 5 is a product of orthogonal reflections. The j-th
reflection P; ;,, is designed to zero out the sub-diagonal element ;. in By. With
71 = «q it may be represented as

J j+1 J Jj+1 7 j+1
) / / _ s
ol
i+1 [8 —Cj Biy1 Qjy1 Yit1 |

_ 1 _
where 7; = (732 + 532+1)27 ¢y =/, 85 = Bj+1/7j, and

Siv1 = Siaiiq,
(14) J+ JI+
Vi1 = —C0 41

The rotations apply to the right-hand side ;e; to produce g;, defined by the recurrence
(15) 1/}/1 = 517 1/% = C;cw;ca ¢2+1 = S;#ﬂ;c» k=]-727 “e.

T
It will be convenient to use the notation g;H = [ng 1/J§c+1] .

The QR factors of By, give the Cholesky factorization Tj, = R;‘:Rk. To form LQ
factors of T}, we take the LQ factorization

(16) Ry = Mkav Mk =

Initially, &, = 7; so that R; = M;. We use the notation of Paige and Saunders (1975)
to indicate that M, differs from the leading k-by-k submatrix M, of M, in the
(k, k)-th element only, which is updated to &, once 0,1 = app18k41/7s is computed.
This results in the plane reflection @}, 41 defined by

ke k41 k k+1 k k41
(17) k €k Opq1 Ck Sk | _ €k
- = b
k1 Vk+1 Sg —Cg Mk+1 €k+1
h =@+) =6) d
where ey, = (& + 0j41)2, ¢, = Ex/ek, 5k = Op11/€k, an

= 5 5
(18) Mk4+1 Ve+15k

€kt1 = ~Vh+1Ck-

199

200

201

202
203

207

B
&0

209
210

211

214

215
216

[\
—_
-~

218
219
230

222

[Toc] LSLQ 7
Combining (12) and (16) gives

HkT—l = BkT—lLk = [BkT—1Bk—1 akﬁkek—l] = Rg—l [kal 51@61971]-

By construction,

Ry 5k€k—1] Vi [My, 0]
R, = =M = _
b [Vi ¢Qx 77k€£—1 €k O

and we obtain the LQ factorization

Hl ,=Rj, [My_1 0] Qr = [Ri_1My_y 0] Q.

With the solution of Hg_ly,f = [1e; in mind, we consider the system thk = a0
and obtain ¢, := [71 e Tk]T by the recursion

= o B/,

(19) :
Tj = 77—_]‘_1(5]*/")/]',] :2,...,k.

We also consider the systems M,_,2,_; = t;_; and M,z := t;, and obtain z,_; :=

[Cl Ck_l]T and z, = [2,7;71 C_k]T by the recursion
G =7i/en,
(20) C]:(TJ_CJ—N?;)/EJ’ .7:277k_15

G = (15 — Co1mi) [k = Ci/cy

0
Now let W, := Vng = [w1 cee Wh_q wk] = [VVk,l wk]. Starting with
le := 0 and x? := (0 we obtain

Then yr = QF [Zkl] solves (10), while y§ = QF 2, solves (8).

Zp — [z._
(21) xé = kalf = Vng [ko 1] =W [kO 1] =Wis12p-1 = $£—1 + (o1 Wr—1,
(22) vy = ViQk 2 = Wiz = Wi12p_1 + G = of + G-

Thus, as in SYMMLAQ it is always possible to transfer to the CG point. In terms of
error, Proposition 1 indicates that transferring is always desirable.
At the next iteration we have W, | = Vk+1Q£+1v where

R | B

With w; := v; this gives

(23a) Wy, = LWy + SpUki1,

(23b) W41 = SpWg — CkUk41-

Because the columns of Wj,_; and W, are orthonormal in exact arithmetic, we have

k—1
L2 2 2 2 L 2 2
(24) l2k 1 = W1z = e | = Y] G = ek]® + G,
j=1

(25) i 1 = ok 1? + G-

226
227

229
230

231

235

237
238
239

240
241

245
246
247
248

8 R. ESTRIN, D. ORBAN, AND M. SAUNDERS [Toc]

2.4. Residual estimates. The k-th LSLQ residual is defined as r;? =b— Axé.
We use the definition of 2 = Viyr, (3), (12) and (16) to express it as

ry =b— AViyr = Upyq (ﬂ1€1 - Bky;f)
R
= U1 Py (51Pg€1 - [Ok] ylf)
= U1 Py <Q;+1 - [%Qk] y;f)

= Ups1 By <g;c+1 -

My_12;,4
= U1 P g;ﬁtl - NkCr—1]
0
Jr—1 t—1
=Ups1 B Ui | = [mCe=1 | |
Vit 0

where gj, 4 is defined in (12) and (15). It is not immediately obvious that g,_; = t;_1,
but note that (12) yields [Rf_l 0] P | = B{_,, so that

Rz—lgk—l = [R£—1 0] [911221] = Bg—lﬁlel = aife1 = Rz—ltk—l

as long as v;,_1 # 0. Therefore, if the process does not terminate, we have g,_; = t;_1
as announced. By orthogonality of Uy, ; and P, we have

2

0
(26) I = H Y — MeCr—1 = (Y — MCho1)” + Why1)”
w;ﬁ‘-ﬁ-l

The residual norm for the CG-point can also be computed as

(R
i€ = v e = G (e - |]) = v (| 2|
V41

Ry| ¢
The top k rows of the parenthesized expression vanish by definition of yg, and there
remains

c T
Irk | = (B1Px €1) k1 = [€hial-

To derive recurrences for the residual norm for (NE), we can use the recurrences
derived in Paige and Saunders (1975) for SYMMLQ and CG, which become

AT E1? = (veer)*Cr + (Orme—1)*Cr1,s

T C
[A" 7| = a1 8151 - S_185/Ck-

2.5. Norm and condition number estimates. Assuming orthonormality of
Vi, (4) yields VkTATAVk = BkTBk, so that the Poincaré separation theorem ensures
Omin(A) < 0min(Br) < Omax(Bi) < 0max(4) for all k, where o,,,;,, denotes the smallest
nonzero singular value. Therefore we may use | B}, as an estimate of | A| and cond(By,)

[Toc] LSLQ 9

Algorithm 2 LSLQ

1: fiu; =b, ayv; = ATu1 // begin Golub-Kahan process
2: 6, =—1, Y, =0 // initialize variables
3: 19 =Py, Go=0
4: Cy = 1, So = 0
T C
5 AT rg || = a1 By
6: 'lDl =V, 1 = 0
7. for k=1,2,...do
8: Bri1Uri1 = Avy, — oy, // continue Golub-Kahan process
T
9: Qpy1Vpy1 = A U1 — Br41Vk B
10: v = (7% + B,%_,_l)?, S = Y/ Vk» Sk = Br+1/vs |/ continue QR factorization
/
11 Ops1 = SkO%k+1
12: Vh+1 = ~CrQky1
13: Tk = —Tr—10k/
14: €L = —ViCh_1 // continue LQ factorization
15: M = VkSk—1)
=2 2 4 _
16: Er = (E':k + 5k+1)2a Cr = Ek/gkv S = (Sk_;,_l/{-l:k
L / 2 721
17 Iri—al = (@k—ﬁk = Goo1Mk)” + (Yr—18k)7)2
18: ¢kC: Y15k
o 1] = by -
20: G = (T — Gee17k) /2) // optional: ¢, = Gi/cy,
T L 22,2 | 2 2.2 1 . AT C T C . ,
21: IA™ T || = (vieekCi + 0kmiCe—1)® // optional: A ri | = | A% ri_y|sper1/cy
22: Wy = cku_)k + SpUky1
23: Wg41 = SEWg — CkVUk41 , -
24: x£+1 = xﬁ + (pwy, // optional: 2 = 2t + (i,
L 2 Ly2 |, 2 . c g2 c2 | =2
25: l2es1]” = lzx|” + ¢k // optional: |z 1| = |ag |” + &
26: end for

as an estimate of cond(A) in both the Euclidean and Frobenius norms. In particular,
2 2 2 2
1Brs1le = |BelF + ai + Bicta-
As in (Fong and Saunders, 2011, Section 3.4), our approximation of cond(A) rests
on the QLP factorization
M 0
e s
NMkCrk—1 €k
According to Stewart (1999), the absolute values of the diagonals of the bidiagonal
matrix above are tight approximations to the singular values of B;,. Thus we estimate
Umin(Bk) ~ min<€1? sy €1, |€k|)’ Umax<Bk) ~ max(eh sy €1, ‘€k|)7

and cond(A) & 0y (By)/0min(By), which turns out to be reasonably accurate in
practice. If b lies in a subspace spanned by only a few singular vectors of A, iterations
will terminate early and cond(B),) will be an improving estimate of cond(AV;).

3. Complete algorithm. The complete procedure is summarized as Algorithm 2.
As in (Fong and Saunders, 2011, Theorem 4.2), we can prove the following.

THEOREM 2. LSLQ returns the MLS solution, i.e., it solves

minimize [|z|| subject to z € arg min |Ay — b|.
zeR" Y

269

oo

286
287
288

289

292
293
294
295
296

297

298

299

300

10 R. ESTRIN, D. ORBAN, AND M. SAUNDERS [Toc]

4. Error estimates. In exact arithmetic, a least-squares solution z, is identified
. . . L ¢
after at most £ < min(m, n) iterations, so that z, = xi,; = >, (jw;. Because
L k—1 . L L L ¢
zy = 2 Gjw;, the error may be written as e = z¢y; —xy = >;_; Gw;. By

orthogonality, He,%HQ = Zﬁ: k CJZ . A possible stopping condition is

1
k 2
(27) lekr — zi_al® = (> Cf) <elakal (k> d),
j=k—d
where d € IN is a delay and 0 < ¢ < 1 is a tolerance. The left-hand side of (27) is a
lower bound on the error |er_y.

As we illustrate in section 6, (27) is not a robust stopping criterion because
the lower bound may sometimes underestimate the actual error by several orders of
magnitude. In the following sections, we develop a more robust estimate defined by
an upper bound.

4.1. Upper bound on the LSLQ error. Estrin et al. (2016) develop an upper
bound on the Euclidean error along SYMMLQ iterations for a symmetric positive
semidefinite system. The bound leads to an upper bound on the error along CG
iterations. We now translate those estimates to the present scenario and obtain upper
bounds on the error along LSLQ and LSQR iterations for (LS) or (38). We begin with
an upper bound on the LSLQ error. By orthogonality, |z, — 25| = |z.|* — |z£|?,
and because |zx |* can be computed, an upper bound on the error will follow from an
upper bound on |z,|?. Assume temporarily that m > n and that A has full column
rank, so that ATA is nonsingular. We may express

|z, |? = " A(ATA) 2 ATh = bT AF(ATA) AT,

where f(£) := €2 is defined for all £ € (0, 03], and where we define f(ATA) :=
PF(2Ts)PT with A = QEPT the SVD of A. In other words, if p; is the i-th column
of P and o; is the i-th largest singular value of A,

We have from line 2 of Algorithm 1 and (6) that A’ = f;v; and therefore
n
2 T .
lz.]* = Z Nm W =pjvg, t=1,...,n.

When A is rank-deficient, ATA is positive semidefinite and singular, but (NE)
remains consistent. In addition, the MLS solution of (LS) lies in Range(A”). Let 7
be the smallest integer in {1,...,n} such that 0, =--- =0, =0 and o, > 0. Then

rank(A) = r = dim Range(A”) and the smallest nonzero eigenvalue of ATA is o2. By
the Rayleigh-Ritz theorem,

0% = min {HAUH? | v e Range(A”), |v] = 1} .

Note that each v; € Range(A”) and that (4) implies T}, = V¥ ATAV}, in exact arith-
metic. Hence, for all u € R* with |ul| = 1, we have |V,u| = 1 and u” Tyu = |AV,ul® =
03 > 0, and each T}, is uniformly positive definite, despite the fact that ATA s singular.

301
302
303

314

316
317
318
319
320

321

w W

NN N
w N

=~

]
t

]

w
N
~

328
329
330
331
332

333

[Toc] LSLQ 11

Thus, in the rank-deficient case, ATA = Yy or pipiT. The only difference with the
full-rank case is that the sum occurs over all nonzero singular values of A. Therefore,
we need only redefine

e ifa>o0
(28) 7€) = {0 if 2 = 0.

Because each 77 and each z§ € Range(A”), the LSLQ and LSQR iterations occur
in Range(AT) exactly as if they were applied to the r-by-r positive-definite system

PTATAP.z = PF A",

where P, = [pl pr] and x, = P.z. A consequence of the above discussion is
that

r
2 02 2\ 2 T .
Hx*H :ﬁIEf(ai)/J’iv g ::pivl,lzla"wn'
=1

Golub and Meurant (1997) explain that the main insight is to view the previous
sum as the Riemann-Stieltjes integral

(29) > st = [et anto).

where the piecewise constant Stieltjes measure u is defined as

0 if 0 < o,
L r 2 .
(o) = Zj:i pi ifo; <o <oy
2 .
Z;:l/‘bj lfO’}O’l.

Approximations to the integral via Gauss-related quadrature rules yield corresponding
approximations to ||z, |%.

Our main result leading to an upper bound estimate follows from a Gauss-Radau
approximation of (29) with a fixed quadrature node in (0, o2). We begin with a
paraphrase of (Estrin et al., 2016, Theorem 2).

PROPOSITION 3. Suppose f : R — R is such that f(2j+1)(§) < 0 for all € €
(02, 0%) and all j = 0. Fiz 0,4 € (—0,, 0,), 0oy # 0. Let T}, be the tridiagonal
generated after k steps of Algorithm 1 and w;, € C be chosen so that the smallest

etgenvalue of ~
fk .: [Tk%l 5;%—12}
Brer—1 o + @i

is precisely Jist. Then,
bTAF(ATA)ATD < Blel f(T)er.

In particular, Proposition 3 applied to f defined in (28) provides an upper bound
on la, .

Note that the Poincaré separation theorem ensures that the smallest eigenvalue of
each T)._, is at least af and that the Cauchy interlace theorem guarantees that the
smallest eigenvalue of Tk is smaller than or equal to that of Tj,_;. Thus it is possible
to choose w, satisfying the requirements of Proposition 3.

334
335

336

338
339
340
341
342
343
344
345

346

w
~J

W W W W w w
oS O

w
Ot Ot Ot Ot Ot R R =

w w
at =W N =

~

w
ot Ot ot Ot

oo

W oW w

359

360
361
362

363

364

365

12 R. ESTRIN, D. ORBAN, AND M. SAUNDERS [Toc]

We now comment on the surprising fact that @; € C in Proposition 3. To avoid
forming T, and T}, explicitly, we would prefer to pick a nonzero o € (0, 0,.) and seek
@y, such that o is the smallest singular value of

~ Lk

(30) B, = [kaZ] .
The fact that w, € C is a departure from the computations of Estrin et al. (2016),
who establish that the last diagonal of Tk is real: ai + wi € R. In order for wi to
be real, w; must be either real or purely imaginary. In a numerical implementation
of (30), although it is possible to avoid computations in complex arithmetic, we do
observe corrections w;, such that the last diagonal is strictly less than ozi, i.e., such
that w;, is purely imaginary.

An alternative strategy that avoids complex numbers altogether is to pick a
nonzero o € (0, 0,.) and seek wy, such that oy is the smallest singular value of

5 Ry Opep_q
(31) R, = [w .

Note that R, differs from Ry, the R factor in the QR factors of By, in the (k, k)-th
entry only. In addition, if f%k is the Cholesky factor of ’l}, its diagonals are guaranteed
to be real and positive and the smallest eigenvalue of T}, will be Jgst.

As earlier, the Poincaré separation theorem guarantees that the singular values
of each R;,_;, which are the same as those of Bj,_;, lie between o, and oy, and the
Cauchy interlace theorem for singular values guarantees that it is indeed possible
to choose wy, so that the smallest singular value (31) is 0. We may now restate
Proposition 3 with the above in mind.

THEOREM 4. Suppose f: R — R is such that f(2j+1)(§) <0 for all £ € (02, 07)
and all j = 0. Fiz 0.4 € (0, 0,). Let B), be the bidiagonal generated after k steps
of Algorithm 1 and wy, > 0 be chosen so that the smallest singular value of (31) is
precisely o.4. Then,

bTAf(ATA) AT < Fiel f(RE Ry)ey.

In order to determine wy,, we follow Golub and Kahan (1965) and embed ék into
a larger symmetric matrix to change the singular value problem into an eigenvalue
problem. Indeed,

0 Ry
32 ~
(32) R 0
has eigenvalues +o;(Ry). Define
0 .
71 0 0y
dy O
? Y ’62 85 N YQI% 2 Opeap 2
Yoo i= . o Yo i= | Opegp o 0 W
63 0 . Wi 0
V-1
L Ve-1 0 |

366
367

368

369

376

378

379

381

382

383

384

386
387
388

389

390

[Toc] LSLQ 13

Note that }72,C is a symmetric permutation of (32) and therefore shares the same eigen-

values. If 0. is an eigenvalue of 17% and h?F) = [91 e sz]T is a corresponding
eigenvector, then (Ya, — Uestf)h(Qk) = 0; that is,
Yoo - Testd OpCop—2 hgfk_)2
Op€ar—2 “Oest W Oop—1 | =0
Wik “Oest 02]@

Necessarily, 69,1 # 0 because otherwise R =0 entirely. Thus we may fix 05, _; = 1.

The first block equation reads (Y5;_o — oestl)hgf_)2 = —0p€9,_o. Let Oy be the last

entry of hgfjw which can be computed by updating the QR factors of Y5, 5 as in
(Estrin et al., 2016).

In order to compute wy, note that the last two equations,

0o,
|:6k —Oest Wi] 211 2 0

Wi “Oest 92k

. 2
imply that wy, = \/Uest — Oest 00212

With w,, computed, we have ﬁfﬁk = Tk. We are now interested in efficiently
computing the upper bound

(33) |z, |* < Biel f(RERy)ey = Biel (R Ry) ey

The LQ factorization ﬁfk = J\’Zk@k provides the LQ factorization T’k = E{]\Afk@k,
which in turn yields

2
2 a2 Ar—1p-T ar—17 2 ~ 12
ol < |B M BT = IAT 1 = 15,

where we define 7, and %, from R} i, = B,e; and Mkék = 1}, as in (Estrin et al., 2016).
We determine the LQ factorization R; = M@, from

ék _ [Rkl 5k€k1] _ |:MkT—1] [le]
Wk NMk€k—1 Ek 1

Thus Q, = Qy and M, differs from M, in the (k,k — 1)-th and (k, k)-th entries only,
which become

~

Nk = WESk—1, E = —WECk—1-

Recalling the definition of ¢, in (19) and z,_; in (20) we observe that

(34) £ = [t’il] and 2, = [Z’“],

Tk @
where
(35) T = —Th—10k/Wp = T /Wi and Gy = (T — MpCr1)/Ek-
From (24) and orthogonality of W}, we now have

L2 2 L2 2, ™ 2 _ 2
(36) lze =23 |7 = ™ = 2k |7 < lzi—1l™ + G = ll2e-a]” = G-

395
396
397
398
399
400
101
402

404
405
406

408
109

410

411

413
414

415

416
417
418
419
420
421

14 R. ESTRIN, D. ORBAN, AND M. SAUNDERS [Toc]

4.2. Upper bound on the LSQR error. Obtaining an upper bound on the
LSQR error is of interest for two reasons. First, LSLQ may transfer to the LSQR
point at any iteration using a simple vector operation—see (22). Second, LSQR always
produces a smaller error, as formalized by Proposition 1.

Based on Proposition 1, we wish to use the upper bound (36) and the transition
(22) to the LSQR point to terminate LSLQ early and obtain an iterate with an error
below a prescribed level. Evidently the same upper bound (36) could be used, but
Estrin et al. (2016) provide the improved bound

(37) o, — a2 < G - &,

where (is defined in (20) and (, is in (35).

5. Regularization. LSLQ may be adapted to solve the regularized least-squares

problem
Al b
A0

where A > 0 is a given regularization parameter. The optimality conditions (NE)
become

2

e . 1
(38) minimize 3

)
zeR"

(39) (ATA + X°I)z = A",

If we run Algorithm 1 on A only, we will produce the factorization

A)

which we can compare to the factorization achieved when running Algorithm 1 on the
entire regularized system,

O,

Br+1

Note that V;, will remain unchanged, as can be seen from the equivalence between the
Golub-Kahan process and the Lanczos process on the normal equations (Saunders,
1995). Given Ek, we could run the non-regularized LSLQ algorithm (using & and B
instead of o and f) to obtain all of the desired iterates and estimates. The idea is
therefore to compute By, via Golub-Kahan on (A, b), cheaply compute each &, and

A

B and use them in place of a;, and [, in the rest of the algorithm. For k = 3, the

423

425
426

428
429

430
431
132
433
434
135
436
437
438
439
140
441
442
443

[Toc] LSLQ 15

factorization proceeds according to

_041] _Ofl] _al]
By s Ba Gy By Gy
B3 g B3 ag Bs s
Ba| — . Ba| — B4
A Ay
A A Ao
A A A
(42) ~ _ - _ ~ _
s s 9
Ba o Ba P2 Gy
By ay By ay By ay
- By| — Ba| = B4
A3
L A L Az | i _

We use (3,1 to zero out Ay, which transforms oy, ; into & ; and introduces a nonzero
A1 above A in the next column. We then use a second reflection to zero out A,
using A, which produces A, ;. With A\; = A, the recurrences for k > 2 are

A 2 241
Bri1 = (Brr1 + k)2,
I A
Cp = 6k+1/5k+17
I ~
Sk = /\k/ﬁkH,

(43) A .
Qg1 = Cp Oy,

%, — L

k+1 = Sk k41,
2,32 %

Apr1 = (A7 + Api1) 2.

With A > 0, the operator of (38) has full column rank, i.e., r = n, and satisfies
0, = A. Theorem 4 then states that we should select o € (0, \).

6. Numerical experiments. In the experiments reported here, the exact solu-
tion of (LS) was computed as the MLS solution using a complete orthogonal decom-
position of A via the Factorize package (Davis, 2013). The horizontal axis in plots
represents iterations, each involving a product with A and a product with AT LSLQ
is implemented in the Julia language (julialang.org) and is available as part of the
Krylov.jl suite of iterative methods (Orban, 2017). Subsection 6.1 and subsection 6.2
document our results on problems from the animal breeding test set and on the seismic
inversion problem described in section 1, respectively. Although all test problems
are over-determined, the solvers apply to systems of any shape. We have observed
qualitatively similar results for square and underdetermined systems.

6.1. Problems from the animal breeding test set. In this section, we use
test problems from the animal breeding collection of Hegland (1990, 1993). These
over-determined problems have rank-deficiency 1, come in two flavors and sizes, and
have accompanying right-hand sides. In the first flavor, a single parameter is fitted
per animal, while in the second flavor, two parameters are fitted per animal and A
has twice as many rows and columns. The nonzero columns of A are scaled to have
unit Euclidean norm.

http://julialang.org

447
448
449
450
451
152
453
454
455
456
157
458
459
460
461
162
463
464
465
466
167
168
469
470
471
472
473
174
475
476
477
478
479
480

16 R. ESTRIN, D. ORBAN, AND M. SAUNDERS [Toc]

large: 28254 x 17264 large2: 56508 x 34528

—— actual LSLQ —— actual LSLQ
104 4 = window=5 104 4 — window=5
—— window=10 —— window=10

102 4
10° 4 100 4
1072 4

10-2 4

1074 A

1076

T T T T T T T T T T T T
0 50 100 150 200 250 0 100 200 300 400 500

F1c. 2. Error along the LSLQ iterations on problems large and large2 from the animal breeding
set. The red and blue curves show the lower bounds with d =5 and d = 10.

We found that generating the problems from the original archive requires a small
amount of corrections to the programs and several compilation steps. Because we feel
that the problems from this set are generally useful as least-squares test problems,
we have created an archive containing the problems as well as the MLS solutions
corresponding to the scaled problems in Rutherford-Boeing format (Duff, Grimes,
and Lewis, 1997). Our repository can be accessed at github.com/optimizers/animal
(Orban, 2016).

We begin with an illustration of the non-robust lower bound (27) based on a
delay d. Figure 2 plots the actual LSLQ error along with the lower bound with delay
(window size) d = 5 and 10 iterations for problems large and large2 (larger versions
of the problems used in Figure 1). The behavior seen is typical. As in the left-hand
plot, the lower bound tends to follow the exact error curve tightly when the latter is
strictly decreasing. But as the right-hand plot shows, it tends to underestimate the
actual error by several orders of magnitude when the latter plateaus, and requires a
fair number of iterations to recover, rendering the stopping test unreliable by itself. In
both plots, the stopping test used is (27) with ¢ = 107 *°. The curves for d = 5 and 10
are almost the same.

Figure 3 illustrates the behavior of our upper bound (36) on problems large and
large2 with regularization: a typical scenario for rank-deficient problems whose smallest
nonzero singular value is unknown. For a given value A # 0, the smallest singular
value of the regularized A is o,, = |\|. Estrin et al. (2016) show numerically that the
upper bound is tighter when |04 is closer to |o,,|, but they do not consider the effect
of regularization. To simplify the discussion, we consider only positive values of . For
each value of A > 0, we set 0. 1= (1 — 10710) A and measure the error with respect
to the solution of the regularized problem.

We observe from Figure 3 that increasing A (and hence o) substantially improves
the quality of the upper bound. The reason may be that T’k is moved further away from
singularity. In the case of large2 with A\ = 102, the upper bound is exceptionally tight
after about 100 iterations. As A decreases, the upper bound deteriorates, although it
remains a potentially useful bound as long as A # 0.

In Figure 4, we compute the bound (37) on the error along the LSQR iterates or,
equivalently, along the LSQR points obtained by transitioning from a corresponding
LSLQ point. As with LSLQ, the quality of the LSQR upper bound deteriorates
when A, or its regularization, approaches rank-deficiency. The LSQR bound appears

https://github.com/optimizers/animal

481
482
483
484
485
486
187
488
489
490
491

492
493

494

495
496
497
498

[Toc] LSLQ 17

large: 28254 x 17264, A = 1.0e-04, Ot = 1.0e-04 large2: 56508 x 34528, A = 1.0e-04, Oest = 1.0e-04
—— actual LSLQ —— actual LSLQ
101 —— window=5 101 4 —— window=5
—— window=10 —— window=10
LSLQ upper bound LSLQ upper bound
10° 108 4
10°q 105 4
102 1024
1071 10-1
1074 A 10-4
T v T T T T T T T T T T
0 50 100 150 200 250 0 100 200 300 400 500
large: 28254 x 17264, A = 1.0e-02, Ocst = 1.0e-02 large2: 56508 x 34528, A = 1.0e-02, Ocst = 1.0e-02
—— actual LSLQ s —— actual LSLQ
. 10% 4 .
107 4 = window=5 = window=5
—— window=10 —— window=10
. LSLQ upper bound 10° LSLQ upper bound
10° 4
104 4
103 4
102 B
10] 4
100 B
10-1 4
1072
1073 A
1074 4
1075 4
T T T T T T 107 T T T T T
0 50 100 150 200 250 0 100 200 300 400

Fic. 3. Error along the LSLQ iterations on problems large and large2 with reqularization. The
red and blue curves show the lower bounds with d =5 and d = 10. The cyan curve shows the upper

bounds for A = 10 (top) and \ = 1072 (bottom).

somewhat looser than the LSLQ bound, although Estrin et al. (2016) note that it
could be tightened by incorporating an additional term along a moving window to the
right-hand side of (37).

The next experiment illustrates the upper bounds for rank-deficient problems when
we have knowledge of o,.. A sparse SVD reveals that the smallest nonzero singular
value after scaling is approximately o, = o,,_; ~ 0.0498733 for problem small and
0, = 0,1 ~ 0.00499044 for small2. In each case, we set ooy = (1 —107%)5,,_;. In
practice, one may need to underestimate further in order to account for inaccurate o,..

As the error bounds in Figure 5 are quite tight, it seems important to supply an
estimate of o, in rank-deficient problems if such knowledge is available. In Figure 5,
LSLQ stops as soon as the upper bound on the LSQR error falls below 10_10kacH.

6.2. The seismic inverse problem. The least-squares problem arising from
the PDE-constrained optimization problem described in section 1 has the form

L

where p = 0.1 is fixed, A is a square 5-point stencil discretization of a Helmholtz
operator, P is a sampling operator (some rows of the identity), and ¢ and d are fixed
vectors. We experimented with a case in which n = 83,600 and P has 248 rows. The
columns of the operator were not scaled as in the previous section, as that reduced

2
44 minimize 1
() zeR" 2

)

Pt
T W N = O <

18 R. ESTRIN, D. ORBAN, AND M. SAUNDERS [Toc]

large: 28254 x 17264, A = 1.0e-04, Ot = 1.0e-04 large2: 56508 x 34528, A = 1.0e-04, Oest = 1.0e-04
1013 J
—— actual LSQR —— actual LSQR
101! LSQR upper bound LSQR upper bound
10]0 4
108 4
107 4
105 4
104 4
102 4
10" A
1071 4
1072 A
1074 4
1075
6 5‘0 160 1_;)0 260 ZéO (IJ 160 2(‘)0 3(‘)0 4(IJO 5(‘)0
large: 28254 x 17264, A = 1.0e-02, Ot = 1.0e-02 large2: 56508 x 34528, A = 1.0e-02, Oest = 1.0e-02
109 4
—— actual LSQR —— actual LSQR
107 4 LSQR upper bound 107 1 LSQR upper bound
10° 105 4
103 4 103
10" 10 A
1071 4 1071 A
1073 4 103 4
1075 10-5 4
1074 10774

T T T T
100 200 300 400

oA

T T T T
100 150 200 250

oA
wd
=3

Fic. 4. Error along the LSQR iterations on problems large and large2 with regularization. The
cyan curve shows the upper bounds for o,y = 107" (top) and o4 = 1072 (bottom).

the performance of LSLQ. A complete orthogonal decomposition, used to compute the
exact solution, reveals that the operator of (44) has full rank but its smallest nonzero
singular value is 0(10_6). A partial sparse SVD suggests that there are several small
singular values. To obtain upper error bounds, it was necessary to set o,y = 1077 to
avoid domain errors in computing the square root in the expression for w;, preceding
(33). The left plots of Figure 6 illustrate the upper and lower bounds on the error
and the large number of iterations needed to decrease the error by a factor of 10'°.
The bounds on the LSLQ and LSQR errors nonetheless track the exact errors quite
accurately, with the upper bound on the LSQR error overestimating by one or two
orders of magnitude. Though the factor 10 is far too demanding in practice, it
illustrates that many iterations are likely when there are many tiny singular values.
The situation is similar when the problem is regularized and the error is measured with
respect to the exact solution of the original, unregularized, problem. The right plots of
Figure 6 show the bounds in the presence of modest regularization A when the error is
computed with respect to the exact solution of the regularized problem. Dramatically
fewer iterations are needed to achieve a corresponding decrease in the error. Note
the remarkable tightness of the LSLQ and LSQR bounds, with the LSQR upper
bound consistently overestimating by about one order of magnitude. The improved
performance on the regularized problem suggests that a regularized optimization
approach, such as that of Arreckx and Orban (2016), could be appropriate.

NN NN NN =
T = W N = O ©

o
(=]

)~

o Ot ot Ot Ot Ot Ot Ot Ot Ot Ot Ot Ot Ot Ot Ot Ot Ot Ot ot Ut Ot

[Toc] LSLQ 19

small: 3140 x 1988, Oest = 5.0e-02 small2: 6280 x 3976, Oest = 5.0e-03
109 B
—— actual LSLQ —— actual LSLQ
—— window=5 —— window=5
10°1 —— window=10 1071 —— window=10
LSLQ upper bound LSLQ upper bound
103 105 4
103 4
10] 4
101 4
107t
107" A
-3
10 103 4
10-° 10-5 4
T v T T T T T T T T T T T T
0 50 100 150 200 0 50 100 150 200 250 300 350 400
small: 3140 x 1988, et = 5.0e-02 small2: 6280 x 3976, Oest = 5.0e-03
—— actual LSQR 108 4 —— actual LSQR
105 4 LSQR upper bound LSQR upper bound
5 4
1034 10
10% 4 102
107" 4
107] 4
1073 4
1074 A
10>5 4
, 1077 4
10774

o
u
=3
=
=)
S
-
o
=3
N
S
o
N
o
o
w
=3
S
w
o
=3
I
=3
o

T T T T T
0 50 100 150 200

Fic. 5. Error along the LSLQ and LSQR iterations on problems small and small2 without
reqularization. Both problems have rank-deficiency 1.

7. Discussion. LSLQ is an iterative method for the least-squares and least-
norm problems (LS) and (LN) with the attractive property that it ensures monotonic
reduction in the Euclidean error ||z — 2]o. In deriving it we have completed the triad
of solvers LSQR, LSMR, LSLQ for problem (LS) based on the Golub and Kahan (1965)
process. They are mathematically equivalent to the symmetric solvers CG, MINRES,
SYMMLQ on (NE) but are numerically more reliable when A is ill-conditioned.

Although the Euclidean error for LSQR is provably better at each iterate, it is
possible to develop cheaply computable lower and upper bounds on the error for LSLQ.
The intimate relationship between the methods, analogous to that between CG and
SYMMLQ (Estrin et al., 2016), provides a corresponding upper bound on the LSQR
error at each iteration. Such an upper bound was not previously available. It may be
used in a stopping criterion to terminate LSLQ and transfer to the LSQR point.

Strakos and Tichy (2002) justify the adequacy of A-norm error estimates for CG
by way of a finite-precision arithmetic analysis. The upper bounds described in the
present paper assume exact arithmetic and orthogonality of the Golub-Kahan bases. In
the numerical experiments, our aim has been to observe if the theoretical upper bounds
remain upper bounds in practice. They appear to do so up to the point of convergence,
as they do for CG and SYMMLQ. We conclude that a future finite-precision analysis
is justified.

Fong and Saunders (2012, Table 5.1) summarize the monotonicity of various
quantities related to the LSQR and LSMR iterations. Table 1 is similar but focuses
on LSQR and LSLQ.

543
544
545
546

547

20

R. ESTRIN, D. ORBAN, AND M. SAUNDERS

Full-Wave Inversion: 83848 x 83600, 0t = 1.0e-07

[Toc]

Full-Wave Inversion: 83848 x 83600, A = 1.0e-04, Oest = 1.0e-04

04

109 4 —— actual LSLQ 1034 —— actual LSLQ
—— window=5 —— window=5
107 —— window=10 —— window=10
LSLQ upper bound 1014 LSLQ upper bound
105 4
1034 107!
10] 4
10°2
1071 4
1073 4 10-5
10-5 4
1077
10*7 4
T T T T T v v v T T T T T
0 20000 40000 60000 80000 100000 120000 140000 0 100 200 300 400
Full-Wave Inversion: 83848 x 83600, Ocst = 1.0e-07 Full-Wave Inversion: 83848 x 83600, A = 1.0e-04, Ocst = 1.0e-
109 4 —— actual LSQR 103 —— actual LSQR
LSQR upper bound LSQR upper bound
107 4
10] 4
105 4
1071 4
103 4
10t 4 10-3 4
1071 4
1075 4
1073 4
1077 A
10-5 4
10-7 4 1070 4
T T T T T v v v T T T T T
0 20000 40000 60000 80000 100000 120000 140000 0 100 200 300 400

Fic. 6. Error along the LSLQ and LSQR iterations on the seismic inverse problem without

regularization (left) and with regularization (right).

TABLE 1
Comparison of LSQR and LSLQ properties on a linear least-square problems min | Az — b|.

LSQR

LSLQ

EA

| — @]
Ire = ri
Il

| A"y

7 (F, 2011, Theorem 3.3.1)
N (F, 2011, Theorem 3.3.2)
\ (F, 2011, Theorem 3.3.3)
N

not-monotonic

/" (PS, 1975), < LSQR (Proposition 1)
N (PS, 1975), = LSQR (Proposition 1)
not-monotonic
not-monotonic
not-monotonic

x;, converges to MLS on column-rank-deficient problems

/" monotonically increasing

\\ monotonically decreasing

F (Fong, 2011), PS (Paige and Saunders, 1975)

Saunders, Simon, and Yip (1988) develop the USYMLQ method based on an
orthogonal tridiagonalization process that applies to square systems. USYMLQ only
applies to consistent systems and, analogous to SYMMLQ, reduces the Euclidean
error monotonically. Because the orthogonal tridiagonalization process reduces to the
Lanczos (1950) process in the symmetric case, USYMLQ applied to (NE) must be
equivalent to SYMMLQ applied to (NE), and therefore to LSLQ applied to (LS), in
exact arithmetic. However, applying USYMLQ to (NE) would perform redundant
work and require two products with ATA per iteration.

v Ot

[
W N

ot
ot
=

[S1 SN B

0 =1

(SRS NS B IS By
[
© o

D

561

562

563

564

S O
J O Ot

(=2
o ©

ot O Ut Ut Ot Ot Lt
o

v Ot Ot
S R S RN |
NI R

0 3 N 9 3
S © 0w g o ot

oo

[Toc] LSLQ 21

7.1. A generalization. LSLQ may be generalized to the solution of symmetric
quasi-definite systems (Vanderbei, 1995) of the form

M Allr b
® PadIHR
where M = M”* and N = N7 are positive definite. Indeed (45) represents the
optimality conditions of
Al b
1" o

where E = blkdiag(M ", N). Under the assumption that solves with M and N can
be performed cheaply, which is the case in certain optimization schemes and fluid
flow simulations (Orban and Arioli, 2017), it suffices to replace the Golub-Kahan
process (Algorithm 1) with its preconditioned variant, stated as (Orban and Arioli,
2017, Algorithm 4.2), and to set the regularization parameter A = 1.

Note that (45) also represents the optimality conditions of the least-norm problem

2

)
E

e . 1
(46) minimize 3

zeR"

(LN2) minimize (|3 + |2|%) subject to Mr+ Az = b.

zeR", seR™
We may construct a companion method to LSLQ that solves (LN2) by implicitly
applying SYMMLQ to the normal equations of the second kind, which in this case are

(NE2) (AN“'AT + M)yr=b, Nz =A"r

This variant, let us call it LNLQ, is to LSLQ as the method of Craig (1955) is to
LSQR. Following the same reasoning as Saunders (1995) and Orban and Arioli (2017),
it appears possible to show that applying SYMMLQ to (45) with preconditioner
blkdiag(M, N) is equivalent to applying LSLQ to (46) and LNLQ to (LN2) simulta-
neously. If so, SYMMLQ applied to (45) would perform twice the work by solving the
two equivalent problems (NE) and (NE2) simultaneously, making a solver for (LN2)
worthwhile. An implementation of LNLQ is the subject of ongoing work.

Acknowledgements. We are grateful to Tristan van Leeuwen for supplying code
that allowed us to generate instances of the seismic inverse problem. We are also
deeply grateful to the referees for their insightful recommendations.

References.

S. Arreckx and D. Orban. A regularized factorization-free method for equality-
constrained optimization. Cahier du GERAD G-2016-65, GERAD, Montréal, QC,
Canada, 2016.

A. R. Conn, N. I. M. Gould, and Ph. L. Toint. Trust-Region Methods, volume 1
of MPS/SIAM Series on Optimization. SIAM, Philadelphia, USA, 2000. DOI:
10.1137/1.9780898719857.

J. E. Craig. The N-step iteration procedures. Journal of Mathematics and Physics, 34
(1):64-73, 1955.

T. A. Davis. Algorithm 930: FACTORIZE: An object-oriented linear system
solver for matlab. ACM Trans. Math. Softw., 39(4):28:1-28:18, July 2013. DOI:
10.1145/2491491.2491498.

I. S. Duff, R. G. Grimes, and J. G. Lewis. The Rutherford-Boeing sparse matrix
collection. Technical Report RAL-TR-97-031, Rutherford Appleton Laboratory,
Chilton, OX, UK, 1997.

http://dx.doi.org/10.1137/1.9780898719857
http://dx.doi.org/10.1145/2491491.2491498

22 R. ESTRIN, D. ORBAN, AND M. SAUNDERS [Toc]

R. Estrin, D. Orban, and M. A. Saunders. FEuclidean-norm error bounds for CG via
SYMMLQ. Cahier du GERAD G-2016-70, GERAD, Montréal, QC, Canada, 2016.

D. C.-L. Fong. Minimum-residual methods for sparse least-squares using golub-kahan
bidiagonalization, December 2011.

D. C.-L. Fong and M. A. Saunders. LSMR: An iterative algorithm for sparse
least-squares problems. SIAM J. Sci. Comput., 33(5):2950-2971, 2011. DOI:
10.1137/10079687X.

D. C.-L. Fong and M. A. Saunders. CG versus MINRES: An empirical comparison.
SQU Journal for Science, 17(1):44-62, 2012.

G. H. Golub and W. Kahan. Calculating the singular values and pseudo-inverse of a
matrix. STAM J. Numer. Anal., 2(2):205-224, 1965. DOI: 10.1137/0702016.

G. H. Golub and G. Meurant. Matrices, moments and quadrature II; how to compute
the norm of the error in iterative methods. BIT Num. Math., 37(3):687-705, 1997.
DOI: 10.1007/BF02510247.

M. Hegland. On the computation of breeding values, pages 232—242. Springer Berlin
Heidelberg, Berlin, Heidelberg, 1990. ISBN 978-3-540-46597-3. DOI: 10.1007/3-540-
53065-7_103.

M. Hegland. Description and use of animal breeding data for large least squares
problems. Technical Report TR/PA/93/50, CERFACS, Toulouse, France, 1993.
M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear

systems. J. Res. N.B.S., 49(6):409-436, 1952.

C. Lanczos. An iteration method for the solution of the eigenvalue problem of linear
differential and integral operators. J. Res. N.B.S. B, 45:225-280, 1950.

G. Meurant. Estimates of the 12 norm of the error in the conjugate gradient algorithm.
Numerical Algorithms, 40(2):157-169, 2005. DOI: 10.1007/s11075-005-1528-0.

D. Orban. optimizers/animal: Initial release, December 2016. URL https://github.
com/optimizers/animal.

D. Orban. Krylov. jl suite of iterative methods, July 2017. URL https://github.com/
JuliaSmoothOptimizers/Krylov.jl.

D. Orban and M. Arioli. [terative Methods for Symmetric Quasi-Definite Linear
Systems. Number 03 in Spotlights. STAM, Philadelphia, PA, 2017. ISBN 978-1-
611974-72-0.

C. C. Paige and M. A. Saunders. Solution of sparse indefinite systems of linear
equations. SIAM J. Numer. Anal., 12(4):617-629, 1975. DOI: 10.1137/0712047.
C. C. Paige and M. A. Saunders. LSQR: An algorithm for sparse linear equations
and sparse least squares. ACM Trans. Math. Softw., 8(1):43-71, 1982a. DOI:

10.1145/355984.355989.

C. C. Paige and M. A. Saunders. Algorithm 583; LSQR: Sparse linear equations
and least-squares problems. ACM Trans. Math. Softw., 8(2):195-209, 1982b. DOLI:
10.1145/355993.356000.

M. A. Saunders. Solution of sparse rectangular systems using LSQR and CRAIG. BIT
Num. Math., 35:588-604, 1995. DOI: 10.1007/BF01739829.

M. A. Saunders, H. D. Simon, and E. L. Yip. Two conjugate-gradient-type methods
for unsymmetric linear equations. SIAM J. Numer. Anal., 25(4):927-940, 1988.
DOLI: 10.1137/0725052.

G. W. Stewart. The QLP approximation to the singular value decomposition. STAM
J. Sci. Comput., 20(4):1336-1348, 1999. DOI: 10.1137/S1064827597319519.

Z. Strakos and P. Tichy. On error estimation in the conjugate gradient method and
why it works in finite precision. Elec. Trans. Numer. Anal., 13, 2002.

T. Van Leeuwen and F. J. Herrmann. A penalty method for PDE-constrained op-

http://dx.doi.org/10.1137/10079687X
http://dx.doi.org/10.1137/0702016
http://dx.doi.org/10.1007/BF02510247
http://dx.doi.org/10.1007/3-540-53065-7_103
http://dx.doi.org/10.1007/3-540-53065-7_103
http://dx.doi.org/10.1007/3-540-53065-7_103
http://dx.doi.org/10.1007/s11075-005-1528-0
https://github.com/optimizers/animal
https://github.com/optimizers/animal
https://github.com/optimizers/animal
https://github.com/JuliaSmoothOptimizers/Krylov.jl
https://github.com/JuliaSmoothOptimizers/Krylov.jl
https://github.com/JuliaSmoothOptimizers/Krylov.jl
http://dx.doi.org/10.1137/0712047
http://dx.doi.org/10.1145/355984.355989
http://dx.doi.org/10.1145/355993.356000
http://dx.doi.org/10.1007/BF01739829
http://dx.doi.org/10.1137/0725052
http://dx.doi.org/10.1137/S1064827597319519

[Toc] LSLQ 23

640 timization. Technical Report TR-EOAS-2013-6, University of British Columbia,
641 2013.

642 R. J. Vanderbei. Symmetric quasi-definite matrices. SIAM J. Optim., 5(1):100-113,
643 1995. DOI: 10.1137,/0805005.

http://dx.doi.org/10.1137/0805005

	Introduction
	Derivation of the method
	The Golub-Kahan process
	LSLQ: method
	LSLQ: implementation
	Residual estimates
	Norm and condition number estimates

	Complete algorithm
	Error estimates
	Upper bound on the LSLQ error
	Upper bound on the LSQR error

	Regularization
	Numerical experiments
	Problems from the animal breeding test set
	The seismic inverse problem

	Discussion
	A generalization

