LNLQ: AN ITERATIVE METHOD FOR LEAST-NORM PROBLEMS WITH AN ERROR MINIMIZATION PROPERTY*

RON ESTRIN ${ }^{\dagger}$, DOMINIQUE ORBAN ${ }^{\ddagger}$, AND MICHAEL A. SAUNDERS ${ }^{\S}$

Abstract

We describe LNLQ for solving the least-norm problem min $\|x\|$ subject to $A x=b$. Craig's method is known to be equivalent to applying the conjugate gradient method to the normal equations of the second kind $\left(A A^{T} y=b, x=A^{T} y\right)$. LNLQ is equivalent to applying SYMMLQ. If an underestimate to the smallest singular value is available, error upper bounds for both x and y are available at each iteration. LNLQ is a companion method to the least-squares solver LSLQ (Estrin, Orban, and Saunders, 2017), which is equivalent to SYMMLQ on the conventional normal equations. We show that the error upper bounds are tight and compare with the bounds suggested by Arioli (2013) for CRAIG. A sliding window technique allows us to tighten the error upper bound in y at the expense of a few additional scalar operations per iteration. We illustrate the tightness of the error upper bounds on a standard test problem and on the computation of an inexact gradient in the context of a penalty method for PDE-constrained optimization.

Key words. Linear least-norm problem, error minimization, SYMMLQ, conjugate gradient method, CRAIG.

AMS subject classifications. 15A06, 65F10, 65F22, 65F25, 65F35, 65F50, 93E24

1. Introduction. We wish to solve the least-norm problem

$$
\begin{equation*}
\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} \frac{1}{2}\|x\|^{2} \quad \text { subject to } A x=b \tag{1}
\end{equation*}
$$

where $\|\cdot\|$ denotes the Euclidean norm, $A \in \mathbb{R}^{m \times n}$, and the constraints are assumed to be consistent. Any solution $\left(x_{\star}, y_{\star}\right)$ satisfies the normal equations of the second kind:

$$
A A^{T} y=b, \quad x=A^{T} y \quad \Leftrightarrow \quad\left[\begin{array}{cc}
-I & A^{T} \tag{2}\\
A &
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
0 \\
b
\end{array}\right] .
$$

The main objective of this paper is to devise an iterative method and accompanying reliable upper bounds on the errors $\left\|x_{k}-x_{\star}\right\|$ and $\left\|y_{k}-y_{\star}\right\|$.

Existing iterative methods tailored to the solution of (1) include CRAIG (Craig, 1955) and LSQR (Paige and Saunders, 1982a,b). LSQR does not provide any convenient such upper bounds. CRAIG generates iterates x_{k} that are updated along orthogonal directions, so that it is possible to devise an upper bound on the error in x (Arioli, 2013), but does not update the iterates y_{k} along orthogonal directions.

CRAIG and LSQR turn out to be formally equivalent to the method of conjugate gradients (CG) (Hestenes and Stiefel, 1952) and MINRES (Paige and Saunders, 1975) applied to (2), respectively, but are more reliable when A is ill-conditioned. By construction, LNLQ is formally equivalent to SYMMLQ applied to (2). LNLQ inherits

[^0]beneficial properties of SYMMLQ, including orthogonal updates to y_{k}, cheap transfers to the CRAIG point, and cheap upper bounds on the error $\left\|y_{k}-y_{\star}\right\|$.

Motivation. Linear systems of the form (2) occur during evaluation of the value and gradient of a certain penalty function for equality-constrained optimization (Fletcher, 1973; Estrin, Friedlander, Orban, and Saunders, 2018). Our main motivation is to devise reliable termination criteria that allow control of the error in the solution of (1), thereby allowing us to evaluate inexact gradients cheaply while maintaining global convergence properties of the underlying optimization method. Our approach follows the philosophy of Estrin, Orban, and Saunders (2016) and Estrin et al. (2017) and requires an estimate of the smallest singular value of A. Although such an estimate may not always be available in practice, good underestimates are readily available in many optimization problems, including PDE-constrained problems-see section 7.

Arioli (2013) develops an upper bound on the error in x along the CRAIG iterations based on an appropriate Gauss-Radau quadrature (Golub and Meurant, 1997), and suggests the seemingly simplistic upper bound $\left\|y_{k}-y_{\star}\right\| \leqslant\left\|x_{k}-x_{\star}\right\| / \sigma_{r}$, where σ_{r} is the smallest nonzero singular value of A.

The remainder of this paper is outlined as follows: Section 2 gives the background on the Golub and Kahan (1965) process and CRAIG. Sections 3-6 derive LNLQ from the Golub and Kahan process, highlight relationships to CRAIG, derive error bounds, and discuss regularization and preconditioning. Numerical experiments are given in section 7. Extensions to quasi-definite systems are given in section 8, followed by concluding remarks in section 9.

Notation. We use Householder notation: A, b, β for matrix, vector, scalar, with the exception of c and s denoting scalars that define reflections. All vectors are columns, but the slightly abusive notation $\left(\xi_{1}, \ldots, \xi_{k}\right)$ is sometimes used to enumerate their components in the text. Unless specified otherwise, $\|A\|$ and $\|x\|$ denote the Euclidean norm of matrix A and vector x. For symmetric positive definite M, we define the M-norm of u via $\|u\|_{M}^{2}:=u^{T} M u$. We order the singular values of A according to $\sigma_{1} \geqslant \sigma_{2} \geqslant \cdots \geqslant \sigma_{\min (m, n)} \geqslant 0$, and A^{\dagger} denotes the Moore-Penrose pseudoinverse of A.

2. Background.

2.1. The Golub-Kahan process. The Golub and Kahan (1965) process applied to A with starting vector b is described as Algorithm 1 . In line $1, \beta_{1} u_{1}=b$ is short for " $\beta_{1}=\|b\|$; if $\beta_{1}=0$ then exit; else $u_{1}=b / \beta_{1}$ ". Similarly for line 2 and the main loop. In exact arithmetic, the algorithm terminates with $k=\ell \leqslant \min (m, n)$ and either $\alpha_{\ell+1}$ or $\beta_{\ell+1}=0$. Paige (1974) explains that if $A x=b$ is consistent, the process must terminate with $\beta_{\ell+1}=0$.

```
Algorithm 1 Golub-Kahan Bidiagonalization Process
Require: \(A, b\)
    \(\beta_{1} u_{1}=b\)
    \(\alpha_{1} v_{1}=A^{T} u_{1}\)
    for \(k=1,2, \ldots\) do
        \(\beta_{k+1} u_{k+1}=A v_{k}-\alpha_{k} u_{k}\)
        \(\alpha_{k+1} v_{k+1}=A^{T} u_{k+1}-\beta_{k+1} v_{k}\)
    end for
```

We define $U_{k}:=\left[\begin{array}{lll}u_{1} & \cdots & u_{k}\end{array}\right], V_{k}:=\left[\begin{array}{lll}v_{1} & \cdots & v_{k}\end{array}\right]$, and

$$
L_{k}:=\left[\begin{array}{cccc}
\alpha_{1} & & & \tag{3}\\
\beta_{2} & \alpha_{2} & & \\
& \ddots & \ddots & \\
& & \beta_{k} & \alpha_{k}
\end{array}\right], \quad B_{k}:=\left[\begin{array}{cccc}
\alpha_{1} & & & \\
\beta_{2} & \alpha_{2} & & \\
& \ddots & \ddots & \\
& & \beta_{k} & \alpha_{k} \\
& & & \beta_{k+1}
\end{array}\right]=\left[\begin{array}{c}
L_{k} \\
\beta_{k+1} e_{k}^{T}
\end{array}\right]
$$

After k iterations of Algorithm 1, the following hold to machine precision:

$$
\begin{align*}
A V_{k} & =U_{k+1} B_{k} \tag{4a}\\
A^{T} U_{k+1} & =V_{k} B_{k}^{T}+\alpha_{k+1} v_{k+1} e_{k+1}^{T}=V_{k+1} L_{k+1}^{T} \tag{4b}
\end{align*}
$$

while the identities $U_{k}^{T} U_{k}=I_{k}$ and $V_{k}^{T} V_{k}=I_{k}$ hold only in exact arithmetic. The next sections assume that these identities do hold, allowing us to derive certain norm estimates that seem reliable in practice until high accuracy is achieved in x and y.
2.2. CRAIG. For problem (1), the method of Craig (1955) was originally derived as a form of the conjugate gradient (CG) method (Hestenes and Stiefel, 1952) applied to (2). Paige (1974) provided a description based on Algorithm 1:

$$
\begin{equation*}
L_{k} t_{k}=\beta_{1} e_{1}, \quad x_{k}^{C}:=V_{k} t_{k}=x_{k-1}^{C}+\tau_{k} v_{k} \tag{5}
\end{equation*}
$$

where $t_{k}:=\left(\tau_{1}, \ldots, \tau_{k}\right)$ and the components of t_{k} can be found recursively from $\tau_{1}=\beta_{1} / \alpha_{1}, \tau_{j}=-\beta_{j} \tau_{j-1} / \alpha_{j}(j \geqslant 2)$. If we suppose $t_{k}=L_{k}^{T} \bar{y}_{k}^{C}$ for some vector \bar{y}_{k}^{C} that exists but need not be computed, we see that

$$
\begin{equation*}
x_{k}^{C}=V_{k} L_{k}^{T} \bar{y}_{k}^{C}=A^{T} U_{k} \bar{y}_{k}^{C}=A^{T} y_{k}^{C}, \tag{6}
\end{equation*}
$$

where $y_{k}^{C}:=U_{k} \bar{y}_{k}^{C}$ provides approximations to y. If we define $D_{k}=\left[\begin{array}{lll}d_{1} & \cdots & d_{k}\end{array}\right]$ from $L_{k} D_{k}^{T}=U_{k}^{T}$, we may compute the vectors d_{j} recursively from $d_{1}=u_{1} / \alpha_{1}$, $d_{j}=u_{j}-\beta_{j} d_{j-1} / \alpha_{j}(j \geqslant 2)$ and then update

$$
y_{k}^{C}=D_{k} L_{k}^{T} \bar{y}_{k}^{C}=D_{k} t_{k}=y_{k-1}^{C}+\tau_{k} d_{k}
$$

To see the equivalence with CG on (2), note that relations (4) yield

$$
\begin{align*}
A A^{T} U_{k}=A V_{k} L_{k}^{T}=U_{k+1} B_{k} L_{k}^{T}=U_{k+1} H_{k} \tag{7}\\
H_{k}:=B_{k} L_{k}^{T}=\left[\begin{array}{c}
L_{k} L_{k}^{T} \\
\alpha_{k} \beta_{k+1} e_{k}^{T}
\end{array}\right] \tag{8}
\end{align*}
$$

which we recognize as the result of k iterations of the Lanczos (1950) process applied to $A A^{T}$ with starting vector b, where

$$
T_{k}:=L_{k} L_{k}^{T}=\left[\begin{array}{cccc}
\bar{\alpha}_{1} & \bar{\beta}_{2} & & \tag{9}\\
\bar{\beta}_{2} & \bar{\alpha}_{2} & \ddots & \\
& \ddots & \ddots & \bar{\beta}_{k} \\
& & \bar{\beta}_{k} & \bar{\alpha}_{k}
\end{array}\right]
$$

is the Cholesky factorization of the Lanczos tridiagonal T_{k}, with $\bar{\alpha}_{1}:=\alpha_{1}^{2}$ and $\bar{\alpha}_{j}:=\alpha_{j}^{2}+\beta_{j}^{2}, \bar{\beta}_{j}:=\alpha_{j} \beta_{j+1}$ for $j \geqslant 2$. Note that $T_{k} \bar{y}_{k}^{C}=L_{k} L_{k}^{T} \bar{y}_{k}^{C}=L_{k} t_{k}=\beta_{1} e_{1}$. CG defines $y_{k}^{C}=U_{k} \bar{y}_{k}^{C}$, and so we have the same iterates as CRAIG:

$$
x_{k}^{C}=A^{T} y_{k}^{C}=A^{T} U_{k} \bar{y}_{k}^{C}=V_{k} L_{k}^{T} \bar{y}_{k}^{C}=V_{k} t_{k}=x_{k-1}^{C}+\tau_{k} v_{k} .
$$

Note that whereas D_{k} is not orthogonal, x_{k}^{C} in (5) is updated along orthogonal directions and

$$
\left\|x_{k}^{C}\right\|^{2}=\sum_{j=1}^{k} \tau_{j}^{2},
$$

i.e., $\left\|x_{k}^{C}\right\|$ is monotonically increasing and $\left\|x_{\star}-x_{k}^{C}\right\|$ is monotonically decreasing. Arioli (2013) exploits these facts to compute upper and lower bounds on the error $\left\|x_{\star}-x_{k}^{C}\right\|$ and an upper bound on $\left\|y_{\star}-y_{k}^{C}\right\|$.

Although it is not apparent in the above derivation, the equivalence with CG applied to (2) shows that $\left\|y_{k}^{C}\right\|$ is monotonically increasing and $\left\|y_{\star}-y_{k}^{C}\right\|$ is monotonically decreasing (Hestenes and Stiefel, 1952, Theorem 6:3).

Unfortunately, the fact that y_{k}^{C} is not updated along orthogonal directions makes it more difficult to monitor $\left\|y_{\star}-y_{k}^{C}\right\|$ and to develop upper and lower bounds. Arioli (2013) suggests the upper bound $\left\|y_{\star}-y_{k}^{C}\right\| \leqslant\left\|x_{\star}-x_{k}^{C}\right\| / \sigma_{n}$ when A has full row rank. LNLQ provides an alternative upper bound on $\left\|y_{\star}-y_{k}^{C}\right\|$ that may be tighter.

The residual for CRAIG is

$$
\begin{equation*}
r_{k}^{C}:=b-A x_{k}^{C}=\beta_{1} u_{1}-A V_{k} t_{k}=U_{k+1}\left(\beta_{1} e_{1}-B_{k} t_{k}\right)=-\beta_{k+1} \tau_{k} u_{k+1} . \tag{10}
\end{equation*}
$$

Other results may be found scattered in the literature. For completeness, we gather them here and provide proofs.

Proposition 1. Let x_{\star} be the solution of (1) and y_{\star} the associated Lagrange multiplier with minimum norm, i.e., the minimum-norm solution of (2). The kth CRAIG iterates x_{k}^{C} and y_{k}^{C} solve

$$
\begin{align*}
& \underset{x}{\operatorname{minimize}}\left\|x-x_{\star}\right\| \text { subject to } x \in \operatorname{Range}\left(V_{k}\right), \tag{11}\\
& \underset{y}{\operatorname{minimize}}\left\|y-y_{\star}\right\|_{A A^{T}} \text { subject to } y \in \operatorname{Range}\left(U_{k}\right) \tag{12}
\end{align*}
$$

respectively. In addition, x_{k}^{C} and y_{k}^{C} solve

$$
\begin{align*}
& \underset{x}{\operatorname{minimize}}\|x\| \text { subject to } x \in \operatorname{Range}\left(V_{k}\right), b-A x \perp \operatorname{Range}\left(U_{k}\right) . \tag{13}\\
& \underset{y}{\operatorname{minimize}}\|y\|_{A A^{T}} \text { subject to } y \in \operatorname{Range}\left(U_{k}\right), b-A A^{T} y \perp \operatorname{Range}\left(U_{k}\right) . \tag{14}
\end{align*}
$$

When A is row-rank-deficient, the $\left(A A^{T}\right)$-norm should be interpreted as a norm when restricted to Range (A).
Proof. Assume temporarily that A has full row rank, so that $A A^{T}$ is symmetric positive definite. Then there exists a unique y_{\star} such that $x_{\star}=A^{T} y_{\star}$ and

$$
\left\|x_{k}^{C}-x_{\star}\right\|=\left\|A^{T}\left(y_{k}^{C}-y_{\star}\right)\right\|=\left\|y_{k}^{C}-y_{\star}\right\|_{A A^{T}} .
$$

In words, the Euclidean norm of the error in x is the energy norm of the error in y. Theorem 6:1 of Hestenes and Stiefel (1952) ensures that y_{k}^{C} is chosen to minimize the energy norm of the error over all $y \in \operatorname{Range}\left(U_{k}\right)$, i.e., y_{k}^{C} solves (12).

To $y \in \operatorname{Range}\left(U_{k}\right)$, there corresponds $x=A^{T} y \in \operatorname{Range}\left(A^{T} U_{k}\right)=\operatorname{Range}\left(V_{k} L_{k}^{T}\right)=$ Range $\left(V_{k}\right)$ by (4) because L_{k} is nonsingular. Consequently, CRAIG generates x_{k}^{C} as a solution of (11).

When A is rank-deficient, our assumption that $A x=b$ is consistent ensures that $A A^{T} y=b$ is also consistent because if there exists a subpace of solutions x, it is possible to pick the one that solves (2), and therefore $b \in \operatorname{Range}\left(A A^{T}\right)$. Kammerer and Nashed (1972) show that in the consistent singular case, CG converges to the minimum-norm solution, i.e., to y_{\star}, the solution of

$$
\underset{y}{\operatorname{minimize}}\|y\| \quad \text { subject to } A A^{T} y=b
$$

Let $r<\min (m, n)$ be such that $\sigma_{r}>0$ and $\sigma_{r+1}=\cdots=\sigma_{\min (m, n)}=0$. Then $\operatorname{rank}(A)=r=\operatorname{dim} \operatorname{Range}(A)$ and the smallest nonzero eigenvalue of $A A^{T}$ is σ_{r}^{2}. The Rayleigh-Ritz theorem states that

$$
\sigma_{r}^{2}=\min \left\{\left\|A^{T} w\right\|^{2} \mid w \in \operatorname{Range}(A),\|w\|=1\right\} .
$$

By (4), each $u_{k} \in \operatorname{Range}(A)$, and (7) and (9) imply that $U_{k}^{T} A A^{T} U_{k}=T_{k}$ in exact arithmetic. Thus for any $t \in \mathbb{R}^{k}$ such that $\|t\|=1$, we have $\left\|U_{k} t\right\|=1$ and

$$
t^{T} U_{k}^{T} A A^{T} U_{k} t=t^{T} T_{k} t \geqslant \sigma_{r}^{2}
$$

so that the T_{k} are uniformly positive definite and CG iterations occur as if CG were applied to the positive-definite reduced system $P_{r}^{T} A A^{T} P_{r} \tilde{y}=P_{r}^{T} b$, where P_{r} is the $m \times r$ matrix of orthogonal eigenvectors of $A A^{T}$ corresponding to nonzero eigenvalues. Thus in the rank-deficient case, y_{k}^{C} also solves (12) except that the energy "norm" is only a norm when restricted to Range (A), and x_{k}^{C} also solves (11).

To establish (13), note that (5) and (10) imply that x_{k}^{C} is primal feasible for (13). Dual feasibility requires that there exist vectors \bar{x}, \bar{y} and \bar{z} such that $x=$ $\bar{z}+A^{T} U_{k} \bar{y}, V_{k}^{T} \bar{z}=0$ and $x=V_{k} \bar{x}$. The first two conditions are equivalent to $V_{k}^{T} x=0+V_{k}^{T} A^{T} U_{k} \bar{y}=B_{k}^{T} U_{k+1}^{T} U_{k} \bar{y}=L_{k}^{T} \bar{y}$. Because $x=V_{k} \bar{x}$, this amounts to $\bar{x}=L_{k}^{T} \bar{y}$. Thus dual feasibility is satisfied with $\bar{x}:=\bar{x}_{k}^{C}, \bar{y}:=\bar{y}_{k}^{C}$ and $\bar{z}:=0$. The proof of (14) is similar.
3. LNLQ. We define LNLQ as equivalent in exact arithmetic to SYMMLQ (Paige and Saunders, 1975) applied to (2). Whereas SYMMLQ is based on the Lanczos (1950) process, LNLQ is based on Algorithm 1. Again we seek an approximation $y_{k}^{L}=U_{k} \bar{y}_{k}^{L}$. The k th iteration of SYMMLQ applied to (2) computes \bar{y}_{k}^{L} as the solution of

$$
\begin{equation*}
\underset{\bar{y}}{\operatorname{minimize}} \frac{1}{2}\|\bar{y}\|^{2} \quad \text { subject to } H_{k-1}^{T} \bar{y}=\beta_{1} e_{1} \tag{15}
\end{equation*}
$$

where H_{k-1}^{T} is the top $(k-1) \times k$ submatrix of $T_{k}(9)$.
3.1. An LQ factorization. In SYMMLQ, the computation of \bar{y}_{k}^{L} follows from the LQ factorization of H_{k-1}^{T}, which can be derived implicitly via the LQ factorization of $T_{k}=L_{k} L_{k}^{T}$. As L_{k} is already lower triangular, we only need the factorization

$$
L_{k}^{T}=\bar{M}_{k} Q_{k}, \quad \bar{M}_{k}:=\left[\begin{array}{cccc}
\varepsilon_{1} & & & \tag{16}\\
\eta_{2} & \varepsilon_{2} & & \\
& \ddots & \ddots & \\
& & \eta_{k} & \bar{\varepsilon}_{k}
\end{array}\right]=\left[\begin{array}{cc}
M_{k-1} & \\
\eta_{k} e_{k-1}^{T} & \bar{\varepsilon}_{k}
\end{array}\right]
$$

where $Q_{k}^{T}=Q_{1,2} Q_{2,3} \ldots Q_{k-1, k}$ is orthogonal and defined as a product of reflections, where $Q_{j-1, j}$ is the identity except for elements at the intersection of rows and columns $j-1$ and j. Initially, $\bar{\varepsilon}_{1}=\alpha_{1}$ and $Q_{1}=I$. Subsequent factorization steps may be represented as

$$
{ }_{j-1}^{j-1}\left[\begin{array}{ccc}
{ }_{j}^{j-2} & { }_{j}-1 & j \\
\eta_{j-1} & \bar{\varepsilon}_{j-1} & \beta_{j} \\
& & \alpha_{j}
\end{array}\right]\left[\begin{array}{ccc}
1 & & \\
& c_{j} & s_{j} \\
& s_{j} & -c_{j}
\end{array}\right]=\left[\begin{array}{ccc}
j-2 & { }^{j-1} & j \\
\eta_{j-1} & \varepsilon_{j-1} & \\
& \eta_{j} & \bar{\varepsilon}_{j}
\end{array}\right],
$$

where the border indices indicate row and column numbers, with the understanding that η_{j-1} is absent when $j=2$. For $j \geqslant 2, Q_{j-1, j}$ is defined by

$$
\varepsilon_{j-1}=\sqrt{\bar{\varepsilon}_{j-1}^{2}+\beta_{j}^{2}}, \quad c_{j}=\bar{\varepsilon}_{j-1} / \varepsilon_{j-1}, \quad s_{j}=\beta_{j} / \varepsilon_{j-1},
$$

and the application of $Q_{j-1, j}$ results in

$$
\begin{equation*}
\eta_{j}=\alpha_{j} s_{j}, \quad \bar{\varepsilon}_{j}=-\alpha_{j} c_{j} \tag{17}
\end{equation*}
$$

We may write $H_{k-1}^{T}=\left[\begin{array}{ll}L_{k-1} L_{k-1}^{T} & \alpha_{k-1} \beta_{k} e_{k-1}\end{array}\right]=L_{k-1}\left[\begin{array}{ll}L_{k-1}^{T} & \beta_{k} e_{k-1}\end{array}\right]$. From (16),

$$
L_{k}^{T}=\left[\begin{array}{cc}
L_{k-1}^{T} & \beta_{k} e_{k-1} \\
& \alpha_{k}
\end{array}\right]=\left[\begin{array}{cc}
M_{k-1} & \\
\eta_{k} e_{k-1}^{T} & \bar{\varepsilon}_{k}
\end{array}\right] Q_{k} \quad \Rightarrow \quad\left[\begin{array}{ll}
L_{k-1}^{T} & \beta_{k} e_{k-1}
\end{array}\right]=\left[\begin{array}{ll}
M_{k-1} & 0
\end{array}\right] Q_{k}
$$

Finally, we obtain the LQ factorization

$$
H_{k-1}^{T}=\left[\begin{array}{ll}
L_{k-1} M_{k-1} & 0 \tag{18}
\end{array}\right] Q_{k}
$$

3.2. Definition and update of the LNLQ and CRAIG iterates. In order to solve $H_{k-1}^{T} \bar{y}_{k}^{L}=\beta_{1} e_{1}$ using (18), we already have $L_{k-1} t_{k-1}=\beta_{1} e_{1}$, with the next iteration giving $\tau_{k}=-\beta_{k} \tau_{k-1} / \alpha_{k}$. Next, we consider $M_{k-1} z_{k-1}=t_{k-1}$ and find the components of $z_{k-1}=\left(\zeta_{1}, \ldots, \zeta_{k-1}\right)$ recursively as $\zeta_{1}=\tau_{1} / \varepsilon_{1}, \zeta_{j}=\left(\tau_{j}-\right.$ $\left.\eta_{j} \zeta_{j-1}\right) / \varepsilon_{j}(j \geqslant 2)$. This time, the next iteration yields $\bar{\zeta}_{k}=\left(\tau_{k}-\eta_{k} \zeta_{k-1}\right) / \bar{\varepsilon}_{k}$ and $\zeta_{k}=\bar{\zeta}_{k} \bar{\varepsilon}_{k} / \varepsilon_{k}=c_{k+1} \bar{\zeta}_{k}$. Thus,

$$
\bar{y}_{k}^{L}=Q_{k}^{T}\left[\begin{array}{c}
z_{k-1} \tag{19}\\
0
\end{array}\right] \quad \text { and } \quad \bar{y}_{k}^{C}=Q_{k}^{T}\left[\begin{array}{c}
z_{k-1} \\
\bar{\zeta}_{k}
\end{array}\right]=Q_{k}^{T} \bar{z}_{k}
$$

solve (15) and $T_{k} \bar{y}_{k}^{C}=\beta_{1} e_{1}$ respectively, matching the definition of the CRAIG iterate.
By construction, $y_{k}^{L}=U_{k} \bar{y}_{k}^{L}$ and $y_{k}^{C}=U_{k} \bar{y}_{k}^{C}$. We define the orthogonal matrix

$$
\bar{W}_{k}=U_{k} Q_{k}^{T}=\left[\begin{array}{llll}
w_{1} & \cdots & w_{k-1} & \bar{w}_{k}
\end{array}\right]=\left[\begin{array}{cc}
W_{k-1} & \bar{w}_{k}
\end{array}\right], \quad \bar{w}_{1}:=u_{1},
$$

so that (19) with z_{k-1} and $\bar{z}_{k}:=\left(z_{k-1}, \bar{\zeta}_{k}\right)$ yields the orthogonal updates

$$
\begin{align*}
& y_{k}^{L}=\bar{W}_{k}\left[\begin{array}{c}
z_{k-1} \\
0
\end{array}\right]=W_{k-1} z_{k-1}=y_{k-1}^{L}+\zeta_{k-1} w_{k-1} \tag{20}\\
& y_{k}^{C}=\bar{W}_{k} \bar{z}_{k}=W_{k-1} z_{k-1}+\bar{\zeta}_{k} \bar{w}_{k}=y_{k}^{L}+\bar{\zeta}_{k} \bar{w}_{k} \tag{21}
\end{align*}
$$

Because \bar{W}_{k} is orthogonal, we have

$$
\begin{equation*}
\left\|y_{k}^{L}\right\|^{2}=\left\|z_{k-1}\right\|^{2}=\sum_{j=1}^{k-1} \zeta_{j}^{2} \quad \text { and } \quad\left\|y_{k}^{C}\right\|^{2}=\left\|y_{k}^{L}\right\|^{2}+\bar{\zeta}_{k}^{2} \tag{22}
\end{equation*}
$$

Thus $\left\|y_{k}^{C}\right\| \geqslant\left\|y_{k}^{L}\right\|,\left\|y_{k}^{L}\right\|$ is monotonically increasing, $\left\|y_{\star}-y_{k}^{L}\right\|$ is monotonically decreasing, and $\left\|y_{\star}-y_{k}^{L}\right\| \geqslant\left\|y_{\star}-y_{k}^{C}\right\|$, consistent with (Estrin et al., 2016, Theorem 6).

Contrary to the update of y_{k}^{C} in CRAIG, y_{k}^{L} is updated along orthogonal directions and y_{k}^{C} is found as an orthogonal update of y_{k}^{L}. The latter follows from the transfer procedure of SYMMLQ to the CG point described by Paige and Saunders (1975).

At the next iteration,

$$
\begin{aligned}
{\left[\begin{array}{ll}
w_{k} & \bar{w}_{k+1}
\end{array}\right] } & =\left[\begin{array}{ll}
\bar{w}_{k} & u_{k+1}
\end{array}\right]\left[\begin{array}{rr}
k+1 \\
c_{k+1} & s_{k+1} \\
s_{k+1} & -c_{k+1}
\end{array}\right] \\
\Rightarrow \quad w_{k} & =c_{k+1} \bar{w}_{k}+s_{k+1} u_{k+1} \\
\bar{w}_{k+1} & =s_{k+1} \bar{w}_{k}-c_{k+1} u_{k+1}
\end{aligned}
$$

3.3. Residual estimates. We define the residual

$$
r_{k}:=b-A x_{k}=b-A A^{T} U_{k} \bar{y}_{k}=U_{k+1}\left(\beta_{1} e_{1}-H_{k} \bar{y}_{k}\right)
$$

using line 1 of Algorithm 1 and (7), where \bar{y}_{k} is either \bar{y}_{k}^{L} or \bar{y}_{k}^{C}. Then for $k>1$,

$$
\begin{aligned}
T_{k} \bar{y}_{k}^{L} & =L_{k} L_{k}^{T} \bar{y}_{k}^{L}=L_{k} \bar{M}_{k} Q_{k} Q_{k}^{T}\left[\begin{array}{c}
z_{k-1} \\
0
\end{array}\right] \\
& =\left[\begin{array}{cc}
L_{k-1} & \\
\beta_{k} e_{k-1}^{T} & \alpha_{k}
\end{array}\right]\left[\begin{array}{cc}
M_{k-1} \\
\eta_{k} e_{k-1}^{T} & \bar{\varepsilon}_{k}
\end{array}\right]\left[\begin{array}{c}
z_{k-1} \\
0
\end{array}\right] \\
& =\left[\begin{array}{cc}
L_{k-1} & \\
\beta_{k} e_{k-1}^{T} & \alpha_{k}
\end{array}\right]\left[\begin{array}{c}
t_{k-1} \\
\eta_{k} \zeta_{k-1}
\end{array}\right]=\left[\begin{array}{c}
\beta_{1} e_{1} \\
\beta_{k} \tau_{k-1}+\alpha_{k} \eta_{k} \zeta_{k-1}
\end{array}\right],
\end{aligned}
$$

where we use (16), the definition of t_{k-1} and z_{k-1}, and (19). Note also that the identity $Q_{k} e_{k}=s_{k} e_{k-1}-c_{k} e_{k}$ yields

$$
e_{k}^{T} \bar{y}_{k}^{L}=e_{k}^{T} Q_{k}^{T}\left[\begin{array}{c}
z_{k-1} \\
0
\end{array}\right]=s_{k} \zeta_{k-1} .
$$

The above and (8) combine to give

$$
\begin{aligned}
r_{k}^{L} & =U_{k+1}\left(\left[\begin{array}{c}
\beta_{1} e_{1} \\
0
\end{array}\right]-\left[\begin{array}{c}
L_{k} L_{k}^{T} \\
\bar{\beta}_{k+1} e_{k}^{T}
\end{array}\right] \bar{y}_{k}^{L}\right)=-U_{k+1}\left[\begin{array}{c}
0 \\
\beta_{k} \tau_{k-1}+\alpha_{k} \eta_{k} \zeta_{k-1} \\
\bar{\beta}_{k+1} s_{k} \zeta_{k-1}
\end{array}\right] \\
& =-\left(\beta_{k} \tau_{k-1}+\alpha_{k} \eta_{k} \zeta_{k-1}\right) u_{k}-\bar{\beta}_{k+1} s_{k} \zeta_{k-1} u_{k+1}
\end{aligned}
$$

By orthogonality, the residual norm is cheaply computable as

$$
\left\|r_{k}^{L}\right\|^{2}=\left(\beta_{k} \tau_{k-1}+\alpha_{k} \eta_{k} \zeta_{k-1}\right)^{2}+\left(\bar{\beta}_{k+1} s_{k} \zeta_{k-1}\right)^{2}
$$

Similarly,

$$
\begin{align*}
r_{k}^{C} & =U_{k+1}\left(\left[\begin{array}{c}
\beta_{1} e_{1} \\
0
\end{array}\right]-\left[\begin{array}{c}
T_{k} \\
\bar{\beta}_{k+1} e_{k}^{T}
\end{array}\right] \bar{y}_{k}^{C}\right)=-U_{k+1}\left[\begin{array}{c}
0 \\
\bar{\beta}_{k+1} e_{k}^{T}
\end{array}\right] Q_{k}^{T} \bar{z}_{k} \\
& =-\bar{\beta}_{k+1} U_{k+1}\left[\begin{array}{c}
0 \\
s_{k} e_{k-1}^{T}-c_{k} e_{k}^{T}
\end{array}\right]\left[\begin{array}{c}
z_{k-1} \\
\bar{\zeta}_{k}
\end{array}\right] \\
& =-\bar{\beta}_{k+1}\left(s_{k} \zeta_{k-1}-c_{k} \bar{\zeta}_{k}\right) u_{k+1}, \tag{24}
\end{align*}
$$

where we use $T_{k} \bar{y}_{k}^{C}=\beta_{1} e_{1}$ (by definition) and (19). Orthogonality of the u_{j} yields orthogonality of the CRAIG residuals, a property of CG (Hestenes and Stiefel, 1952, Theorem 5:1). The CRAIG residual norm is simply

$$
\left\|r_{k}^{C}\right\|=\bar{\beta}_{k+1}\left|s_{k} \zeta_{k-1}-c_{k} \bar{\zeta}_{k}\right| .
$$

In the next section, alternative expressions of $\left\|r_{k}^{L}\right\|$ and $\left\|r_{k}^{C}\right\|$ emerge.
3.4. Updating $\boldsymbol{x}=\boldsymbol{A}^{\boldsymbol{T}} \boldsymbol{y}$. The definition $y_{k}=U_{k} \bar{y}_{k}$ and (4) yield $x_{k}=A^{T} y_{k}=$ $A^{T} U_{k} \bar{y}_{k}=V_{k} L_{k}^{T} \bar{y}_{k}$. The LQ and CRAIG iterates may then be updated as

$$
\begin{aligned}
x_{k}^{L} & =V_{k} L_{k}^{T} \bar{y}_{k}^{L}=V_{k} L_{k}^{T} Q_{k}\left[\begin{array}{c}
z_{k-1} \\
0
\end{array}\right] \\
& =V_{k} \bar{M}_{k}\left[\begin{array}{c}
z_{k-1} \\
0
\end{array}\right]=V_{k}\left[\begin{array}{cc}
M_{k-1} \\
\eta_{k} e_{k-1}^{T} & \bar{\varepsilon}_{k}
\end{array}\right]\left[\begin{array}{c}
z_{k-1} \\
0
\end{array}\right] \\
& =V_{k-1} M_{k-1} z_{k-1}+\eta_{k} \zeta_{k-1} v_{k} \\
& =V_{k-1} t_{k-1}+\eta_{k} \zeta_{k-1} v_{k},
\end{aligned}
$$

and similarly,

$$
x_{k}^{C}=V_{k}\left[\begin{array}{cc}
M_{k-1} & \tag{26}\\
\eta_{k} e_{k-1}^{T} & \bar{\varepsilon}_{k}
\end{array}\right]\left[\begin{array}{c}
z_{k-1} \\
\bar{\zeta}_{k}
\end{array}\right]=x_{k}^{L}+\bar{\varepsilon}_{k} \bar{\zeta}_{k} v_{k}
$$

Because V_{k} is orthogonal, we have

$$
\begin{equation*}
\left\|x_{k}^{L}\right\|^{2}=\sum_{j=1}^{k-1} \tau_{j}^{2}+\left(\eta_{k} \zeta_{k-1}\right)^{2} \quad \text { and } \quad\left\|x_{k}^{C}\right\|^{2}=\sum_{j=1}^{k-1} \tau_{j}^{2}+\left(\eta_{k} \zeta_{k-1}+\bar{\varepsilon}_{k} \bar{\zeta}_{k}\right)^{2} \tag{27}
\end{equation*}
$$

Both x_{k}^{L} and x_{k}^{C} may be found conveniently if we maintain the delayed iterate $\tilde{x}_{k-1}:=\tau_{1} v_{1}+\cdots+\tau_{k-1} v_{k-1}=\tilde{x}_{k-2}+\tau_{k-1} v_{k-1}$, for then we have the orthogonal updates

$$
\begin{equation*}
x_{k}^{L}=\tilde{x}_{k-1}+\eta_{k} \zeta_{k-1} v_{k} \quad \text { and } \quad x_{k}^{C}=\tilde{x}_{k-1}+\left(\eta_{k} \zeta_{k-1}+\bar{\varepsilon}_{k} \bar{\zeta}_{k}\right) v_{k} \tag{28}
\end{equation*}
$$

Proposition 2. We have $\bar{\varepsilon}_{1} \bar{\zeta}_{1}=\tau_{1}$ and for $k>1, \eta_{k} \zeta_{k-1}+\bar{\varepsilon}_{k} \bar{\zeta}_{k}=\tau_{k}$. Therefore,

$$
x_{k}^{C}=\sum_{j=1}^{k} \tau_{k} v_{k} \quad \text { and } \quad r_{k}^{C}=-\beta_{k+1} \tau_{k} u_{k+1}
$$

which are the expressions for x_{k}^{C} and r_{k}^{C} in standard CRAIG.
Proof. The identity for $k=1$ follows from the definitions of $\bar{\varepsilon}_{1}, \bar{\zeta}_{1}$, and τ_{1}. By definition of $\bar{\zeta}_{k}$, we have $\bar{\varepsilon}_{k} \bar{\zeta}_{k}=\tau_{k}-\eta_{k} \zeta_{k-1}$, i.e., $\eta_{k} \zeta_{k-1}+\bar{\varepsilon}_{k} \bar{\zeta}_{k}=\tau_{k}$. The expressions for x_{k}^{C} and r_{k}^{C} follow from (28) and from (24), the definition of $\bar{\beta}_{k+1}$, and (17).

The expressions for x_{k}^{C} and r_{k}^{C} in Proposition 2 coincide with those in standard CRAIG. In particular, we recover the property that x_{k}^{C} is updated along orthogonal directions, so that $\left\|x_{k}^{C}\right\|$ is monotonically increasing and $\left\|x_{\star}-x_{k}^{C}\right\|$ is monotonically decreasing, as stated by Paige (1974). Finally, (25) and Proposition 2 give $x_{k}^{L}=$ $x_{k-1}^{C}+\eta_{k} \zeta_{k-1} v_{k}$.

Proposition 2 allows us to write $\tau_{k}-\eta_{k} \zeta_{k-1}=\bar{\epsilon}_{k} \bar{\zeta}_{k}$. Because $\beta_{k} \tau_{k-1}=-\alpha_{k} \tau_{k}$, the LQ residual may be rewritten

$$
\begin{aligned}
r_{k}^{L} & =\alpha_{k}\left(\tau_{k}-\eta_{k} \zeta_{k-1}\right) u_{k}-\bar{\beta}_{k+1} s_{k} \zeta_{k-1} u_{k+1} \\
& =\alpha_{k} \bar{\epsilon}_{k} \bar{\zeta}_{k} u_{k}-\alpha_{k} \beta_{k+1} s_{k} \zeta_{k-1} u_{k+1}
\end{aligned}
$$

and correspondingly, $\left\|r_{k}^{L}\right\|^{2}=\alpha_{k}^{2}\left(\left(\bar{\epsilon}_{k} \bar{\zeta}_{k}\right)^{2}+\left(\beta_{k+1} s_{k} \zeta_{k-1}\right)^{2}\right)$.
We are now able to establish a result that parallels Proposition 1.
Proposition 3. Let x_{\star} be the solution to (1) and y_{\star} the associated Lagrange multiplier with minimum norm, i.e., the minimum-norm solution of (2). The kth $L N L Q$ iterates y_{k}^{L} and x_{k}^{L} solve

$$
\begin{align*}
& \underset{y}{\operatorname{minimize}}\left\|y-y_{\star}\right\| \text { subject to } y \in \operatorname{Range}\left(A A^{T} U_{k-1}\right) \tag{29}\\
& \underset{x}{\operatorname{minimize}}\left\|x-x_{\star}\right\|_{\left(A A^{T}\right)^{\dagger}} \text { subject to } x \in \operatorname{Range}\left(V_{k-1}\right) \tag{30}
\end{align*}
$$

respectively. In addition, y_{k}^{L} and x_{k}^{L} solve

$$
\begin{align*}
& \underset{y}{\operatorname{minimize}}\|y\| \text { subject to } y \in \operatorname{Range}\left(U_{k}\right), b-A A^{T} y \perp \operatorname{Range}\left(U_{k-1}\right) \tag{31}\\
& \underset{x}{\operatorname{minimize}}\|x\|_{\left(A A^{T}\right)^{\dagger}} \text { subject to } x \in \operatorname{Range}\left(V_{k}\right), b-A x \perp \operatorname{Range}\left(U_{k-1}\right) . \tag{32}
\end{align*}
$$

Proof. By definition, \bar{y}_{k}^{L} solves (15). Hence there must exist \bar{t} such that $\bar{y}_{k}^{L}=$ $H_{k-1} \bar{t}$ and $H_{k-1}^{T} \bar{y}_{k}^{L}=\beta_{1} e_{1}$. By definition of H_{k-1} and (4), we have $y_{k}^{L}=U_{k} \bar{y}_{k}^{L}=$ $U_{k} B_{k-1} L_{k-1}^{T} \bar{t}=A V_{k-1} L_{k-1}^{T} \bar{t}=A A^{T} U_{k-1} \bar{t}$.

The above implies that y_{k}^{L} is primal feasible for (29). Dual feasibility requires that $U_{k-1}^{T} A A^{T}\left(y-y_{\star}\right)=0$, which is equivalent to $U_{k-1}^{T} r_{k}^{L}=0$ because $A A^{T} y_{\star}=b$. The expression (23) confirms that dual feasibility is satisfied.

With $y_{k}^{L} \in \operatorname{Range}(A)$, we have $y_{k}^{L}=\left(A^{\dagger}\right)^{T} x_{k}^{L}$ and then (30) follows from (29).
Using (23), we see that y_{k}^{L} is primal feasible for (31). Dual feasibility requires that $y_{k}^{L}=p+A A^{T} U_{k-1} q$ and $U_{k}^{T} p=0$ for certain vectors p and q, but those conditions are satisfied for $p:=0$ and $q:=\bar{t}$. Since $y_{k}^{L}=\left(A^{\dagger}\right)^{T} x_{k}^{L}$, we obtain (32) from (31).

Note the subtle difference between the constraints of (13) and (32).
Corollary 1. For each $k,\left\|x_{k}^{L}\right\| \leqslant\left\|x_{k}^{C}\right\|$ and $\left\|x_{k}^{C}-x_{\star}\right\| \leqslant\left\|x_{k}^{L}-x_{\star}\right\|$.
Proof. By (4), Range $\left(V_{k}\right)=\operatorname{Range}\left(A^{T} U_{k}\right)$ because L_{k} is nonsingular. Thus the constraints of (32) amount to $b-A A^{T} U_{k} \bar{y} \in \operatorname{Range}\left(U_{k-1}\right)^{\perp}$, for \bar{y} such that $x=A^{T} U_{k} \bar{y}$. Because dim Range $\left(U_{k-1}\right)^{\perp}$ decreases as k increases, the objective $\|x\|$ increases monotonically. In addition, Range $\left(U_{k}\right)^{\perp} \subset \operatorname{Range}\left(U_{k-1}\right)^{\perp}$ and therefore $\left\|x_{k}^{L}\right\| \leqslant\left\|x_{k}^{C}\right\|$. If we compare (11) with (30), we see that $\left\|x_{k}^{C}-x_{\star}\right\| \leqslant\left\|x_{k}^{L}-x_{\star}\right\|$ because Range $\left(V_{k-1}\right) \subset$ Range $\left(V_{k}\right)$.
3.5. Complete algorithm. Algorithm 2 summarizes LNLQ. Note that if only the x part of the solution is desired, there is no need to initialize and update the vectors $w_{k}, \bar{w}_{k}, y_{k}^{L}$ and y_{k}^{C} unless one wants to retrieve x as $A^{T} y$ at the end of the procedure. Similarly, if only the y part of the solution is desired, there is no need to initialize and update the vectors x_{k}^{L} and x_{k}^{C}. The update for x_{k+1}^{C} in line 18 of Algorithm 2 can be used even if the user wishes to dispense with updating x_{k}^{L}.

```
Algorithm 2 LNLQ
    \(\beta_{1} u_{1}=b, \alpha_{1} v_{1}=A^{T} \underline{u}_{1} \quad\) begin Golub-Kahan process
    \(\bar{\varepsilon}_{1}=\alpha_{1}, \tau_{1}=\beta_{1} / \alpha_{1}, \bar{\zeta}_{1}=\tau_{1} / \bar{\varepsilon}_{1} \quad\) begin \(L Q\) factorization
    \(w_{1}=0, \bar{w}_{1}=u_{1}\)
    \(y_{1}^{L}=0, y_{1}^{C}=\bar{\zeta}_{1} \bar{w}_{1}\)
    \(x_{1}^{L}=0, x_{1}^{C}=\tau_{1} v_{1}\)
    for \(k=1,2, \ldots\) do
        \(\beta_{k+1} u_{k+1}=A v_{k}-\alpha_{k} u_{k} \quad\) continue Golub-Kahan process
        \(\alpha_{k+1} v_{k+1}=A^{T} u_{k+1}-\beta_{k+1} v_{k}\)
        \(\varepsilon_{k}=\left(\bar{\varepsilon}_{k}^{2}+\beta_{k+1}^{2}\right)^{\frac{1}{2}} \quad\) continue \(L Q\) factorization
        \(c_{k+1}=\bar{\varepsilon}_{k} / \varepsilon_{k}, s_{k+1}=\beta_{k+1} / \varepsilon_{k}\)
        \(\eta_{k+1}=\alpha_{k+1} s_{k+1}, \bar{\varepsilon}_{k+1}=-\alpha_{k+1} c_{k+1}\)
        \(\zeta_{k}=c_{k+1} \zeta_{k}, \zeta_{k+1}=\left(\tau_{k+1}-\eta_{k+1} \zeta_{k}\right) / \bar{\varepsilon}_{k+1} \quad\) prepare to update \(y\)
        \(w_{k}=c_{k+1} \bar{w}_{k}+s_{k+1} u_{k+1}, \bar{w}_{k+1}=s_{k+1} \bar{w}_{k}-c_{k+1} u_{k+1}\)
        \(y_{k+1}^{L}=y_{k}^{L}+\zeta_{k} w_{k} \quad\) update \(y\)
        \(y_{k+1}^{C}=y_{k+1}^{L}+\bar{\zeta}_{k+1} \bar{w}_{k+1}\)
        \(x_{k+1}^{L}=x_{k}^{C}+\eta_{k+1} \zeta_{k} v_{k+1} \quad\) update \(x\)
        \(\tau_{k+1}=-\beta_{k+1} \tau_{k} / \alpha_{k+1}\)
        \(x_{k+1}^{C}=x_{k}^{C}+\tau_{k+1} v_{k+1}\)
    end for
```

4. Regularization. The regularized least-norm problem is

$$
\begin{equation*}
\underset{x \in \mathbb{R}^{n}, s \in \mathbb{R}^{m}}{\operatorname{minimize}} \frac{1}{2}\left(\|x\|^{2}+\|s\|^{2}\right) \quad \text { subject to } A x+\lambda s=b \tag{33}
\end{equation*}
$$

which is compatible for any $\lambda \neq 0$. Saunders (1995, Result 7) states that applying Algorithm 1 to $\hat{A}:=\left[\begin{array}{ll}A & \lambda I\end{array}\right]$ with initial vector b preserves U_{k}. We find corresponding \widehat{V}_{k} and lower bidiagonal \hat{L}_{k} by comparing the identities

$$
\left[\begin{array}{c}
A^{T} \tag{34}\\
\lambda I
\end{array}\right] U_{k}=\left[\begin{array}{cc}
V_{k} & \\
& U_{k}
\end{array}\right]\left[\begin{array}{c}
L_{k}^{T} \\
\lambda I
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{c}
A^{T} \\
\lambda I
\end{array}\right] U_{k}=\hat{V}_{k} \hat{L}_{k}^{T}
$$

the first of which results from (4) and the second from Algorithm 1 applied to \hat{A}. At iteration k, we apply reflections \hat{Q}_{k} designed to zero out the λI block, resulting in

$$
\left[\begin{array}{cc}
V_{k} & \\
& U_{k}
\end{array}\right]\left[\begin{array}{c}
L_{k}^{T} \\
\lambda I
\end{array}\right]=\left[\begin{array}{cc}
V_{k} & \\
& U_{k}
\end{array}\right] \hat{Q}_{k}^{T} \hat{Q}_{k}\left[\begin{array}{c}
L_{k}^{T} \\
\lambda I
\end{array}\right]=\left[\begin{array}{cc}
\widehat{V}_{k} & \hat{Y}_{k}
\end{array}\right]\left[\begin{array}{c}
\hat{L}_{k}^{T} \\
0
\end{array}\right]=\hat{V}_{k} \hat{L}_{k}^{T}
$$

Saunders (1995) uses \hat{Q}_{k} to describe CRAIG with regularization under the name extended CRAIG. If we initialize $\lambda_{1}:=\lambda$, the first few reflections are illustrated as in Figure 1, where shaded elements are those participating in the current reflection and grayed out elements have not yet been used. Two reflections per iteration are

Fig. 1. Illustration of a few steps of the factorization in the presence of regularization.
necessary, and the situation at iteration k may be described as

$$
\begin{aligned}
{ }_{k} \begin{array}{ccc}
k & { }^{2 k} & { }^{2 k+1}
\end{array}\left[\begin{array}{ccc}
\alpha_{k} & \lambda_{k} & \\
\beta_{k+1} & & \lambda
\end{array}\right]\left[\begin{array}{cc}
k & 2 k \\
\hat{c}_{k} & \hat{s}_{k} \\
\hat{s}_{k} & -\hat{c}_{k}
\end{array}\right]
\end{aligned} \begin{array}{cc}
2 k & 2 k+1 \\
{\left[\begin{array}{cc}
\tilde{c}_{k} & \tilde{s}_{k} \\
\tilde{s}_{k} & -\tilde{c}_{k}
\end{array}\right]} & =\left[\begin{array}{ccc}
k & 2 k & { }^{2 k+1} \\
{\left[\begin{array}{ccc}
\hat{\alpha}_{k} & 0 & \\
\hat{\beta}_{k+1} & \hat{\lambda}_{k+1} & \lambda
\end{array}\right]\left[\begin{array}{ccc}
\tilde{c}_{k} & \tilde{s}_{k} \\
\tilde{s}_{k} & -\tilde{c}_{k}
\end{array}\right]} \\
& =\left[\begin{array}{ccc}
{ }^{k} & 2 k+1 & { }^{2 k+1} \\
\hat{\alpha}_{k} & 0 & \\
\hat{\beta}_{k+1} & 0 & \lambda_{k+1}
\end{array}\right] .
\end{array} .\right.
\end{array}
$$

The first reflection is defined by $\hat{\alpha}_{k}:=\sqrt{\alpha_{k}^{2}+\lambda_{k}^{2}}, \quad \hat{c}_{k}:=\alpha_{k} / \hat{\alpha}_{k}, \hat{s}_{k}:=\lambda_{k} / \hat{\alpha}_{k}$, and results in $\hat{\beta}_{k+1}=\hat{c}_{k} \beta_{k+1}$ and $\hat{\lambda}_{k+1}=\hat{s}_{k} \beta_{k+1}$. The second reflection defines $\lambda_{k+1}:=$ $\sqrt{\hat{\lambda}_{k+1}^{2}+\lambda^{2}}, \tilde{c}_{k}:=\hat{\lambda}_{k+1} / \lambda_{k+1}, \tilde{s}_{k}:=\lambda / \lambda_{k+1}$, and does not create a new nonzero. Only the first reflection contributes to \widehat{V}_{k} :

$$
\left[\begin{array}{cc}
k & 2 k \tag{35}\\
v_{k} & 0 \\
0 & u_{k}
\end{array}\right] \begin{array}{cc}
k & 2 k \\
\left.\left[\begin{array}{cc}
\hat{c}_{k} & \hat{s}_{k} \\
\hat{s}_{k} & -\hat{c}_{k}
\end{array}\right]=\begin{array}{cc}
k & 2 k \\
{\left[\begin{array}{cc}
\hat{c}_{k} v_{k} & \hat{s}_{k} v_{k} \\
\hat{s}_{k} u_{k} & -\hat{c}_{k} u_{k}
\end{array}\right]}
\end{array}, \begin{array}{c}
\\
\hline
\end{array}\right]
\end{array}
$$

where column k is \widehat{v}_{k}.
Iteration k of LNLQ with regularization solves (15) but H_{k-1}^{T} is then the top $(k-1) \times k$ submatrix of

$$
\left[\begin{array}{ll}
L_{k} & \lambda I
\end{array}\right]\left[\begin{array}{c}
L_{k}^{T} \\
\lambda I
\end{array}\right]=L_{k} L_{k}^{T}+\lambda^{2} I=T_{k}+\lambda^{2} I
$$

In (16), we compute the LQ factorization of \hat{L}_{k}^{T} instead of L_{k}^{T}, but the details are identical, as are the updates of y_{k}^{L} in (20) and y_{k}^{C} in (21). Because U_{k} is unchanged by regularization, the residual expressions (23) and (24) remain valid. Subsequently,

$$
\left[\begin{array}{c}
x_{k}^{L} \\
s_{k}^{L}
\end{array}\right]=\left[\begin{array}{c}
A^{T} \\
\lambda I
\end{array}\right] U_{k} \bar{y}_{k}=\hat{V}_{k} \hat{L}_{k}^{T} \bar{y}_{k}
$$

but we are only interested in the top half of x_{k}^{L}. Let the top $n \times k$ submatrix of \hat{V}_{k} be

$$
\widehat{W}_{k}:=\left[\begin{array}{lll}
\widehat{w}_{1} & \cdots & \widehat{w}_{k}
\end{array}\right]=\left[\begin{array}{ll}
I & 0
\end{array}\right] \widehat{V}_{k}=\left[\begin{array}{ll}
V_{k} & 0
\end{array}\right] \hat{Q}_{k}^{T}
$$

We conclude from (35) that $\widehat{w}_{j}=\hat{c}_{j} v_{j}$ for $j=1, \ldots, k$. The update (26) remains valid with v_{k} replaced by \widehat{w}_{k}.

5. Error upper bounds.

5.1. Upper bound on $\left\|\boldsymbol{y}_{\star}-\boldsymbol{y}_{\boldsymbol{k}}^{\boldsymbol{L}}\right\|$. By orthogonality, $\left\|y_{\star}-y_{k}^{L}\right\|^{2}=\left\|y_{\star}\right\|^{2}-\left\|y_{k}^{L}\right\|^{2}$. If A has full column rank, $y_{\star}=\left(A A^{T}\right)^{-1} b$ and $\left\|y_{\star}\right\|^{2}=b^{T}\left(A A^{T}\right)^{-2} b$. If we define

$$
f\left(A A^{T}\right):=\sum_{i=1}^{m} f\left(\sigma_{i}^{2}\right) q_{i} q_{i}^{T}
$$

for any given $f:(0, \infty) \rightarrow \mathbb{R}$, where q_{i} is the i th left singular vector of A, then $\left\|y_{\star}\right\|^{2}=b^{T} f\left(A A^{T}\right) b$ with $f(\xi):=\xi^{-2}$. More generally, as y_{\star} is the minimum-norm solution of (2), it may be expressed as

$$
y_{\star}=\sum_{i=r}^{m} f\left(\sigma_{i}\right)\left(q_{i}^{T} b\right) q_{i}
$$

where σ_{r} is the smallest nonzero singular value of A, which amounts to redefining $f(\xi):=0$ at $\xi=0$. Because $b=\beta_{1} u_{1}$, we may write

$$
\left\|y_{\star}\right\|^{2}=\beta_{1}^{2} \sum_{i=1}^{m} f\left(\sigma_{i}\right) \mu_{i}^{2}, \quad \mu_{i}:=q_{i}^{T} u_{1}, i=1, \ldots, m
$$

We obtain an upper bound on $\left\|y_{\star}\right\|$ by viewing the sum above as a Riemann-Stieltjes integral for a well-chosen Stieltjes measure and approximating the integral via a GaussRadau quadrature. We do not repeat the details here and refer the reader to Golub and Meurant (1997) for background.

The fixed Gauss-Radau quadrature node is set to a prescribed $\sigma_{\text {est }} \in\left(0, \sigma_{r}\right)$. We follow Estrin et al. (2017) and modify L_{k} rather than T_{k}. Let

$$
\widetilde{L}_{k}:=\left[\begin{array}{cc}
L_{k-1} & 0 \tag{36}\\
\beta_{k} e_{k-1}^{T} & \omega_{k}
\end{array}\right]
$$

Note that \widetilde{L}_{k} differs from L_{k} in its (k, k) th element only, and

$$
\widetilde{T}_{k}:=\widetilde{L}_{k} \widetilde{L}_{k}^{T}=\left[\begin{array}{cc}
T_{k-1} & \bar{\beta}_{k-1} e_{k-1} \\
\bar{\beta}_{k-1} e_{k-1}^{T} & \beta_{k}^{2}+\omega_{k}^{2}
\end{array}\right]
$$

(with $\bar{\beta}_{k-1}$ defined in (9)) also differs from T_{k} in its (k, k) th element only. The Poincaré separation theorem ensures that the singular values of L_{k} lie in $\left(\sigma_{r}, \sigma_{1}\right)$. The Cauchy interlace theorem for singular values ensures that it is possible to select ω_{k} so that the smallest singular value of (36) is $\sigma_{\text {est }}$.

The next result derives from (Golub and Meurant, 1997, Theorems 6.4 and 12.6).
Theorem 1 (Estrin et al., 2017, Theorem 4). Let $f:[0, \infty) \rightarrow \mathbb{R}$ be such
that $f^{(2 j+1)}(\xi)<0$ for all $\xi \in\left(\sigma_{r}^{2}, \sigma_{1}^{2}\right)$ and all $j \geqslant 0$. Fix $\sigma_{e s t} \in\left(0, \sigma_{r}\right)$. Let L_{k} be the bidiagonal generated after k steps of Algorithm 1 and $\omega_{k}>0$ be chosen so that the smallest singular value of (36) is $\sigma_{\text {est }}$. Then,

$$
b^{T} f\left(A A^{T}\right) b \leqslant \beta_{1}^{2} e_{1}^{T} f\left(\widetilde{L}_{k} \widetilde{L}_{k}^{T}\right) e_{1}
$$

The procedure for identifying ω_{k} is identical to that of Estrin et al. (2017) and yields $\omega_{k}=\sqrt{\sigma_{\text {est }}^{2}-\sigma_{\text {est }} \beta_{k} \theta_{2 k-2}}$, where $\theta_{2 k-2}$ is an element of a related eigenvector.

Application of Theorem 1 to $f(\xi):=\xi^{-2}$ with the convention that $f(0):=0$ provides an upper bound on $\left\|y_{\star}\right\|^{2}$.

Corollary 2. Fix $\sigma_{e s t} \in\left(0, \sigma_{r}\right)$. Let L_{k} be the bidiagonal generated after k steps of Algorithm 1 and $\omega_{k}>0$ be chosen so that the smallest singular value of (36) is $\sigma_{\text {est }}$. Then,

$$
\left\|y_{\star}\right\|^{2} \leqslant \beta_{1}^{2} e_{1}^{T}\left(\widetilde{L}_{k} \widetilde{L}_{k}^{T}\right)^{-2} e_{1}
$$

In order to evaluate the upper bound stated in Corollary 2, we modify the LQ factorization (16) to

$$
\widetilde{L}_{k}^{T}=\left[\begin{array}{cc}
L_{k-1}^{T} & \beta_{k} e_{k-1} \\
0 & \omega_{k}
\end{array}\right]=\left[\begin{array}{cc}
M_{k-1} & \\
\widetilde{\eta}_{k} e_{k-1}^{T} & \widetilde{\varepsilon}_{k}
\end{array}\right]\left[\begin{array}{cc}
Q_{k-1} & \\
& 1
\end{array}\right]=\widetilde{M}_{k} Q_{k}
$$

where $\widetilde{\eta}_{k}=\omega_{k} s_{k}$ and $\widetilde{\varepsilon}_{k}=-\omega_{k} c_{k}$. Define \widetilde{t}_{k} and \widetilde{z}_{k} such that

$$
\begin{equation*}
\widetilde{L}_{k} \tilde{t}_{k}=\beta_{1} e_{1} \quad \text { and } \quad \widetilde{M}_{k} \widetilde{z}_{k}=\tilde{t}_{k} \tag{37}
\end{equation*}
$$

The updated factorization and the definition of f yield

$$
\left\|y_{\star}\right\|^{2} \leqslant \beta_{1}^{2}\left\|\left(\widetilde{L}_{k} \widetilde{M}_{k} Q_{k}\right)^{-1} e_{1}\right\|^{2}=\beta_{1}^{2}\left\|\widetilde{M}_{k}^{-1} \widetilde{L}_{k}^{-1} e_{1}\right\|^{2}=\left\|\widetilde{M}_{k}^{-1} \widetilde{t}_{k}\right\|^{2}=\left\|\widetilde{z}_{k}\right\|^{2}
$$

Comparing with the definition of t_{k} and z_{k} in subsection 3.2 reveals that $\tilde{t}_{k}=\left(t_{k-1}, \widetilde{\tau}_{k}\right)$ and $\widetilde{z}_{k}=\left(z_{k-1}, \widetilde{\zeta}_{k}\right)$ with $\widetilde{\tau}_{k}=-\beta_{k} \tau_{k-1} / \omega_{k}$ and $\widetilde{\zeta}_{k}=\left(\widetilde{\tau}_{k}-\widetilde{\eta}_{k} \zeta_{k-1}\right) / \widetilde{\varepsilon}_{k}$. Combining with (22) yields the bound

$$
\begin{equation*}
\left\|y_{\star}-y_{k}^{L}\right\|^{2}=\left\|y_{\star}\right\|^{2}-\left\|z_{k-1}\right\|^{2} \leqslant\left\|z_{k-1}\right\|^{2}+\widetilde{\zeta}_{k}^{2}-\left\|z_{k-1}\right\|^{2}=\widetilde{\zeta}_{k}^{2} \tag{38}
\end{equation*}
$$

5.2. Upper bound on $\left\|\boldsymbol{y}_{\star}-\boldsymbol{y}_{\boldsymbol{k}}^{\boldsymbol{C}}\right\|$. Estrin et al. (2016, Theorem 6) establish that $\left\|y_{\star}-y_{k}^{C}\right\| \leqslant\left\|y_{\star}-y_{k}^{L}\right\|$ so that the bound from the previous section applies. However, with $\bar{\zeta}_{k}$ is defined in subsection 3.2 they also derive the improved bound

$$
\begin{equation*}
\left\|y_{\star}-y_{k}^{C}\right\|^{2} \leqslant \widetilde{\zeta}_{k}^{2}-\bar{\zeta}_{k}^{2} \tag{39}
\end{equation*}
$$

Estrin et al. (2016) provide further refinement over this bound by using the sliding window approach. $O(d)$ scalars can be stored at each iteration, and for $O(d)$ additional work a quantity $\theta_{k}^{(d)}$ can be computed so that

$$
\begin{equation*}
\left\|y_{\star}-y_{k}^{C}\right\|^{2} \leqslant \widetilde{\zeta}_{k}^{2}-\bar{\zeta}_{k}^{2}-2 \theta_{k}^{(d)} \tag{40}
\end{equation*}
$$

Note that the definitions of c_{k}, s_{k}, ζ_{k}, and $\bar{\zeta}_{k}$ match those in (Estrin et al., 2016).
5.3. Upper bound on $\left\|\boldsymbol{x}_{\star}-\boldsymbol{x}_{\boldsymbol{k}}^{\boldsymbol{C}}\right\|$. Assume temporarily that A has full column rank. By orthogonality in (25), $\left\|x_{\star}-x_{k}^{C}\right\|^{2}=\left\|x_{\star}\right\|^{2}-\left\|x_{k}^{C}\right\|^{2}$. We may then use

$$
\left\|x_{\star}\right\|^{2}=\left\|A^{T} y_{\star}\right\|^{2}=\left\|y_{\star}\right\|_{A A^{T}}^{2}=\|b\|_{\left(A A^{T}\right)^{-1}}^{2}
$$

Applying Theorem 1 to $f(\xi):=\xi^{-1}$ redefined such that $f(0):=0$ provides an upper bound on $\left\|x_{\star}\right\|^{2}$ in the vein of (Golub and Meurant, 1997, Theorems 6.4 and 12.1).

Corollary 3. Fix $\sigma_{e s t} \in\left(0, \sigma_{r}\right)$. Let L_{k} be the bidiagonal generated after k steps of Algorithm 1 and $\omega_{k}>0$ be chosen so that the smallest singular value of (36) is $\sigma_{\text {est }}$. Then,

$$
\left\|x_{\star}\right\|^{2} \leqslant \beta_{1}^{2} e_{1}^{T}\left(\widetilde{L}_{k} \widetilde{L}_{k}^{T}\right)^{-1} e_{1}
$$

We use (37) to evaluate the bound given by Corollary 3 as

$$
\beta_{1}^{2} e_{1}^{T}\left(\widetilde{L}_{k} \widetilde{L}_{k}^{T}\right)^{-1} e_{1}=\left\|\beta_{1} \widetilde{L}_{k}^{-1} e_{1}\right\|^{2}=\left\|\widetilde{t}_{k}\right\|^{2},
$$

which leads to the bound

$$
\begin{equation*}
\left\|x_{\star}-x_{k}^{C}\right\|^{2} \leqslant\left\|\tilde{t}_{k}\right\|^{2}-\left\|t_{k}\right\|^{2}=\widetilde{\tau}_{k}^{2}-\tau_{k}^{2} \tag{41}
\end{equation*}
$$

This bound must coincide with that of Arioli (2013), which he derived using the Cholesky factorization of T_{k}.

Note that Arioli (2013, Equation (4.4)) proposes the error bound

$$
\begin{equation*}
\left\|y_{\star}-y_{k}^{C}\right\|=\left\|L_{n}^{-1}\left(x_{\star}-x_{k}^{C}\right)\right\| \leqslant \sigma_{\min }\left(L_{k}\right)^{-1}\left\|x_{\star}-x_{k}^{C}\right\| \leqslant \sigma_{r}^{-1}\left\|x_{\star}-x_{k}^{C}\right\| . \tag{42}
\end{equation*}
$$

It may be possible to improve on (42) by maintaining a running estimate of $\sigma_{\min }\left(L_{k}\right)$, such as the estimate $\min \left(\varepsilon_{1}, \ldots, \varepsilon_{k-1}, \bar{\varepsilon}_{k}\right)$ discussed by Stewart (1999).
5.4. Upper bound on $\left\|\boldsymbol{x}_{\star}-\boldsymbol{x}_{\boldsymbol{k}}^{\boldsymbol{L}}\right\|$. Using $x_{k}^{L}=x_{k-1}^{C}+\eta_{k} \zeta_{k-1} v_{k}$, we have

$$
\left\|x_{\star}-x_{k}^{L}\right\|^{2}=\left\|V_{n}\left(t_{n}-\left[\begin{array}{c}
t_{k-1} \\
\eta_{k} \zeta_{k-1} \\
0
\end{array}\right]\right)\right\|^{2}=\left\|x_{\star}-x_{k}^{C}\right\|^{2}+\left(\tau_{k}-\eta_{k} \zeta_{k-1}\right)^{2} .
$$

Thus, using the error bound in (41) we obtain

$$
\begin{equation*}
\left\|x_{\star}-x_{k}^{L}\right\|^{2} \leqslant \widetilde{\tau}_{k}^{2}-\tau_{k}^{2}+\left(\tau_{k}-\eta_{k} \zeta_{k-1}\right)^{2} \tag{43}
\end{equation*}
$$

6. Preconditioning. As with other Golub-Kahan-based methods, convergence depends on the distribution of $\left\{\sigma_{i}(A)\right\}$. Therefore we consider an equivalent system $N^{-\frac{1}{2}} A A^{T} N^{-\frac{1}{2}} N^{\frac{1}{2}} y=N^{-\frac{1}{2}} b$, where $N^{-\frac{1}{2}} A$ has clustered singular values.

For the unregularized problem (2), to run preconditioned LNLQ efficiently we replace Algorithm 1 by the Generalized Golub-Kahan process (Arioli, 2013, Algorithm 3.1). We seek a preconditioner $N>0$ such that $N \approx A A^{T}$, and require no changes to the algorithm except in how we generate vectors u_{k} and v_{k}. This is equivalent to applying a block-diagonal preconditioner to the saddle-point system

$$
\left[\begin{array}{cc}
I & \\
& N^{-1}
\end{array}\right]\left[\begin{array}{cc}
-I & A^{T} \\
A & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{ll}
I & \\
& N^{-1}
\end{array}\right]\left[\begin{array}{l}
0 \\
b
\end{array}\right]
$$

For a regularized system with $\lambda \neq 0$, we need to solve a 2×2 quasi-definite system

$$
\left[\begin{array}{cc}
-I & A^{T} \tag{44}\\
A & \lambda^{2} I
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
0 \\
b
\end{array}\right]
$$

We cannot directly precondition with Generalized Golub-Kahan as before, because properties analogous to (34) do not hold for $N \neq I$. Instead we must precondition the equivalent 3×3 block system

$$
\left[\begin{array}{lll}
I & & \\
& I & \\
& & N^{-1}
\end{array}\right]\left[\begin{array}{ccc}
-I & & A^{T} \\
& -I & \lambda I \\
A & \lambda I &
\end{array}\right]\left[\begin{array}{l}
x \\
s \\
y
\end{array}\right]=\left[\begin{array}{lll}
I & & \\
& I & \\
& & N^{-1}
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
b
\end{array}\right]
$$

where $N \approx A A^{T}+\lambda^{2} I$ is a symmetric positive definite preconditioner. In effect, we must run preconditioned LNLQ directly on $\hat{A}=\left[\begin{array}{ll}A & \lambda I\end{array}\right]$.

Fig. 2. Error in x (top) and y (bottom) along the $L N L Q$ (left) and CRAIG iterations (right). The blue line is the exact error. The red line represents error bounds using quadrature, the green line is the error bound (42) from Arioli (2013), while the yellow and magenta lines employ the sliding window improvement (40) with $d=5$ and 10.
7. Implementation and numerical experiments. We implemented LNLQ in Matlab ${ }^{1}$, including the relevant error bounds. The exact solution for each experiment is computed using Matlab's backslash operator on the augmented system (1). Mentions of CRAIG below refer to the transfer from the LNLQ point to the CRAIG point.
7.1. UFL problem. Matrix Meszaros/scagr7-2c from the UFL collection (Davis and $\mathrm{Hu}, 2011$) has size 2447×3479. We set $b=e / \sqrt{m}$, the normalized vector of ones. For LNLQ and CRAIG we record the error in both x and y at each iteration using the exact solution, and the error bounds discussed above using $\sigma_{\text {est }}=\left(1-10^{-10}\right) \sigma_{\min }(A)$, where $\sigma_{\min }(A)$ was provided from the UFL collection. The same $\sigma_{\text {est }}$ is used to evaluate the bound (42). Figure 2 records the results.

We see that the LNLQ error bounds are tight, even though the error in x is not monotonic. In accordance with Proposition 1, the CRAIG error is lower than the LNLQ error in x, but it is also the case in y. The CRAIG error in x is tight until the Gauss-Radau quadrature becomes inaccurate, a phenomenon also observed by Meurant and Tichý (2014, 2015).

Regarding the CRAIG error in y, we see that the error bounds from (39) and (42) are close to each other, with (42) being slightly tighter. We observed that the simpler bound (42) nearly overlaps with the bound (39) on other problems. However, (40) provides the ability to tighten (39), and even small window sizes such as $d=5$ or 10 can improve the bound significantly until the Gauss-Radau quadrature becomes inaccurate. Thus, the sliding window approach can be useful when an accurate estimate

[^1]of $\sigma_{\min }(A)$ is available if early termination is relevant, for example when only a crude approximation to x and y is required.
7.2. Fletcher's penalty function. We now apply LNLQ to least-norm problems arising from using Fletcher's exact penalty function (Fletcher, 1973; Estrin et al., 2018) to solve PDE-constrained control problems. We consider the problem
\[

$$
\begin{array}{ll}
\underset{\mathbf{u}, \mathbf{z}}{\operatorname{minimize}} & \frac{1}{2} \int_{\Omega}\left\|\mathbf{u}-\mathbf{u}_{d}\right\|^{2} \mathrm{~d} x+\frac{1}{2} \alpha \int_{\Omega} \mathbf{z}^{2} \mathrm{~d} x \\
\text { subject to } & \nabla \cdot(\mathbf{z} \nabla \mathbf{u})=-\sin \left(\omega x_{1}\right) \sin \left(\omega x_{2}\right) \quad \text { in } \Omega \tag{45}\\
& \mathbf{u}=0 \quad \text { on } \partial \Omega
\end{array}
$$
\]

where $\omega=\pi-\frac{1}{8}, \Omega=[-1,1]^{2}$, and $\alpha \geqslant 0$ is a small regularization parameter. Here, \mathbf{u} might represent the temperature distribution on a square metal plate, \mathbf{u}_{d} is the observed temperature, and we aim to determine the diffusion coefficients \mathbf{z} so that \mathbf{u} matches the observations in a least-squares sense. We discretize (45) using finite elements with triangular cells, and obtain the equality-constrained problem

$$
\underset{\bar{u}}{\operatorname{minimize}} f(\bar{u}) \text { subject to } c(\bar{u})=0
$$

Let p be the number of cells along one dimension, so that $u \in \mathbb{R}^{p^{2}}$ and $z \in \mathbb{R}^{(p+2)^{2}}$ are the discretizations of \mathbf{u} and $\mathbf{z}, \bar{u}:=(u, z)$, and $c(\bar{u}) \in \mathbb{R}^{p^{2}}$. We use $p=31$ in the experiments below. Let $A(\bar{u}):=\left[\begin{array}{ll}A_{u} & A_{z}\end{array}\right]$ be the Jacobian of $c(\bar{u})$.

For a given penalty parameter $\sigma>0$, Fletcher's exact penalty approach is to

$$
\begin{aligned}
& \underset{\bar{u}}{\operatorname{minimize}} \phi_{\sigma}(\bar{u}):=f(\bar{u})-c(\bar{u})^{T} y_{\sigma}(\bar{u}) \\
& \quad \text { where } y_{\sigma}(\bar{u}) \in \underset{y}{\arg \min } \frac{1}{2}\left\|\nabla f(\bar{u})-A(\bar{u})^{T} y\right\|^{2}+\sigma c(\bar{u})^{T} y .
\end{aligned}
$$

In order to evaluate $\phi_{\sigma}(\bar{u})$ and $\nabla \phi_{\sigma}(\bar{u})$, we must solve systems of the form (2) with $b=-c(\bar{u})$ and $A=A(\bar{u})$. Note that by controlling the error in the solution of (2), we control the inexactness in the computation of the penalty function value and gradient. In our experiments, we evaluate b and A at $\bar{u}=e$, the vector of ones. We first apply LNLQ and CRAIG without preconditioning. The results are summarized in Figure 3.

We observe trends like those in the previous section. The LNLQ bounds are quite accurate because of our accurate estimate of the smallest singular value, even though the LNLQ error in x is not monotonic. The CRAIG error in x is quite accurate until the Gauss-Radau quadrature becomes unstable, which results in a looser bound. The latter impacts the CRAIG error bound for y in the form of the plateau after iteration 250. The error bound (42) is slightly tighter than (39), while if we use (40) with $d=20$, we achieve a tighter bound until the plateau occurs.

We now use the preconditioner $N=A_{u} A_{u}^{T}$, which corresponds to two solves of Poisson's equation with fixed diffusion coefficients. Because $\sigma_{\min }\left(\left(A_{u} A_{u}\right)^{-1} A A^{T}\right)=$ $\sigma_{\min }\left(I+\left(A_{u} A_{u}^{T}\right)^{-1} A_{z} A_{z}^{T}\right) \geqslant 1$, we choose $\sigma_{\text {est }}=1$. Recall that the y-error is now measured in the N-energy norm. The results appear in Figure 4.

We see that the preconditioner is effective, and that $\sigma_{\text {est }}=1$ is an accurate approximation as the LNLQ error bounds are extremely tight. The CRAIG error bounds are very tight as well.
8. Extension to symmetric quasi-definite systems. Given symmetric and positive definite M and N whose inverses can be applied efficiently, LNLQ generalizes

[^2]

Fig. 3. Error in x (top) and y (bottom) along the LNLQ iterations (left) and CRAIG iterations (right). The red line represents error bounds using quadrature, the yellow line uses a sliding window of $d=20$, and the green line is (42).

Fig. 4. Error in x (top) and y (bottom) along the preconditioned $L N L Q$ iterations (left) and CRAIG iterations (right). The red line represents error bounds using quadrature with $\sigma_{\text {est }}=1$, and the green line is the error bound from Arioli (2013).
to the solution of the symmetric and quasi-definite (Vanderbei, 1995) system

$$
\mathcal{K}\left[\begin{array}{l}
x \tag{46}\\
y
\end{array}\right]:=\left[\begin{array}{cc}
M & A^{T} \\
A & -N
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
0 \\
b
\end{array}\right]
$$

which represents the optimality conditions of both

$$
\begin{align*}
& \underset{x, y}{\operatorname{minimize}} \frac{1}{2}\|x\|_{M}^{2}+\frac{1}{2}\|y\|_{N}^{2} \quad \text { subject to } A x-N y=b \tag{47}\\
& \underset{x}{\operatorname{minimize}} \frac{1}{2}\|A x-b\|_{N^{-1}}^{2}+\frac{1}{2}\|x\|_{M}^{2} \tag{48}
\end{align*}
$$

The only changes required are to substitute Algorithm 1 for the generalized GolubKahan process (Orban and Arioli, 2017, Algorithm 4.2) and to set the regularization parameter $\lambda:=1$. The latter requires one system solve with M and one system solve with N per iteration.

Applying LSLQ (Estrin et al., 2017) to (48) is implicitly equivalent to applying SYMMLQ to the normal equations

$$
\begin{equation*}
\left(A^{T} N^{-1} A+M\right) x=A^{T} N^{-1} b \tag{49}
\end{equation*}
$$

while applying LNLQ to (47) is equivalent to applying SYMMLQ to the normal equations of the second kind:

$$
\begin{equation*}
\left(A M^{-1} A^{T}+N\right) y=c, \quad M x=A^{T} y \tag{50}
\end{equation*}
$$

where we changed the sign of y to avoid distracting minus signs.
In lieu of (4), the generalized Golub-Kahan process can be summarized as

$$
\begin{align*}
A V_{k} & =M U_{k+1} B_{k} \tag{51a}\\
A^{T} U_{k+1} & =N V_{k} B_{k}^{T}+\alpha_{k+1} N v_{k+1} e_{k+1}^{T}=N V_{k+1} L_{k+1}^{T} \tag{51b}
\end{align*}
$$

where this time $U_{k}^{T} M U_{k}=I$ and $V_{k}^{T} N V_{k}=I$ in exact arithmetic. Pasting (51) together yields

$$
\begin{aligned}
{\left[\begin{array}{cc}
M & A^{T} \\
A & -N
\end{array}\right]\left[\begin{array}{ll}
V_{k} & \\
& U_{k}
\end{array}\right] } & =\left[\begin{array}{ll}
M & \\
& N
\end{array}\right]\left[\begin{array}{ll}
V_{k} & \\
& U_{k}
\end{array}\right]\left[\begin{array}{cc}
I & L_{k}^{T} \\
L_{k} & -I
\end{array}\right]+\left[\begin{array}{c}
0 \\
\beta_{k+1} N u_{k+1}
\end{array}\right] e_{2 k}^{T} \\
{\left[\begin{array}{cc}
M & A^{T} \\
A & -N
\end{array}\right]\left[\begin{array}{ll}
V_{k} & \\
& U_{k+1}
\end{array}\right] } & =\left[\begin{array}{cc}
M & \\
& N
\end{array}\right]\left[\begin{array}{ll}
V_{k} & \\
& U_{k+1}
\end{array}\right]\left[\begin{array}{cc}
I & B_{k}^{T} \\
B_{k} & -I
\end{array}\right]+\left[\begin{array}{c}
\alpha_{k+1} M v_{k+1} \\
0
\end{array}\right] e_{2 k+1}^{T}
\end{aligned}
$$

These relations correspond to a Lanczos process applied to (46) with preconditioner $\operatorname{blk} \operatorname{diag}(M, N)$. The small SQD matrix on the right-hand side of the previous identities is a symmetric permutation of the Lanczos tridiagonal, which is found by restoring the order in which the Lanczos vectors $\left(v_{k}, 0\right)$ and $\left(0, u_{k}\right)$ are generated:

$$
T_{2 k+1}=\left[\begin{array}{cccccc}
1 & \alpha_{1} & & & & \\
\alpha_{1} & -1 & \beta_{2} & & & \\
& \beta_{2} & 1 & \ddots & & \\
& & \ddots & \ddots & \alpha_{k} & \\
& & & \alpha_{k} & -1 & \beta_{k+1} \\
& & & & \beta_{k+1} & 1
\end{array}\right]=\left[\begin{array}{cc}
& \\
T_{2 k} & \beta_{k+1} e_{2 k} \\
\beta_{k+1} e_{2 k}^{T} & 1
\end{array}\right] .
$$

Saunders (1995) and Orban and Arioli (2017) show that the CG iterates are welldefined for (46) even though \mathcal{K} is indefinite. In a similar vein, Orban and Arioli
(2017) establish that applying MINRES to (46) with the block-diagonal preconditioner produces alternating preconditioned LSMR and LSQR iterations, where LSMR is applied to (49) and LSQR is applied to (50).

It turns out that SYMMLQ applied directly to (46) with this preconditioner satisfies the following property: even iterations are CG iterations, while odd iterations take a zero step and make no progress. Thus every other iteration is wasted. The generalized iterative methods of Orban and Arioli (2017), LSLQ or LNLQ should be used instead. The property is formalized in the following result.

> ThEOREM 2. Let $x_{k}^{L Q}$ and $x_{k}^{C G}$ be the iterates generated at iteration k of $S Y M M L Q$ and $C G$ applied to (46), and x_{k}^{C} be the iterate defined in (6). Then for $k \geqslant 1, x_{2 k-1}^{L Q}=x_{2 k}^{L Q}=x_{2 k}^{C G}=x_{k}^{C}$.

Proof. For brevity, we use the notation from (Estrin et al., 2016, §2.1) to describe the Lanczos process and how to construct the CG and SYMMLQ iterates. By (51), \underline{T}_{k} and the L factor of the LQ factorization of \underline{T}_{k-1}^{T} have the form

$$
\underline{T}_{k}=\left[\begin{array}{ccccc}
1 & t_{2} & & & \\
t_{2} & -1 & t_{3} & & \\
& t_{3} & 1 & \ddots & \\
& & \ddots & \ddots & \\
& & & t_{k} & (-1)^{k-1} \\
& & & & \\
t_{k+1}
\end{array}\right], \quad L_{k}=\left[\begin{array}{ccccc}
\gamma_{1} & & & & \\
\delta_{2} & \gamma_{2} & & \\
\varepsilon_{3} & \delta_{3} & \gamma_{3} & & \\
& \ddots & \ddots & \ddots & \\
& & \varepsilon_{k-1} & \delta_{k-1} & \gamma_{k-1}
\end{array}\right]
$$

where each t_{i} is a scalar. For $k \geqslant 2$, the LQ factorization is accomplished using reflections defined by

$$
\left[\begin{array}{cc}
\bar{\gamma}_{k-1} & t_{k} \\
\bar{\delta}_{k} & (-1)^{k-1} \\
0 & t_{k+1}
\end{array}\right]\left[\begin{array}{cc}
c_{k} & s_{k} \\
s_{k} & -c_{k}
\end{array}\right]=\left[\begin{array}{cc}
\gamma_{k-1} & 0 \\
\delta_{k} & \bar{\gamma}_{k} \\
\varepsilon_{k+1} & \bar{\delta}_{k+1}
\end{array}\right]
$$

with $\bar{\gamma}_{1}=1, \bar{\delta}_{2}=t_{2}, c_{k}=\frac{\bar{\gamma}_{k-1}}{\gamma_{k-1}}$, and $s_{k}=\frac{t_{k}}{\gamma_{k-1}}$.
We show that $\delta_{j}=0$ for all j by showing that $\bar{\gamma}_{k}=\frac{(-1)^{k}}{c_{k}}$ for $k \geqslant 2$, because in that case

$$
\begin{aligned}
\delta_{k}=\bar{\delta}_{k} c_{k}-(-1)^{k-1} s_{k} & =\left(t_{k} c_{k-1}\right) \frac{\bar{\gamma}_{k-1}}{\gamma_{k-1}}-(-1)^{k-1} \frac{t_{k}}{\gamma_{k-1}} \\
& =\frac{t_{k}}{\gamma_{k-1}}\left((-1)^{k-1}-(-1)^{k-1}\right)=0 .
\end{aligned}
$$

For $k=2$ we have $\gamma_{2}^{2}=1+t_{2}^{2}$ and $c_{2}=\frac{1}{\gamma_{2}}$, so that $\bar{\gamma}_{2}=\bar{\delta}_{2} s_{2}+c_{2}=\frac{t_{2}^{2}}{\gamma_{2}}+\frac{1}{\gamma_{2}}=\gamma_{2}=\frac{1}{c_{2}}$. Proceeding by induction, assume $c_{k-1}=\frac{(-1)^{k-1}}{\bar{\gamma}_{k-1}}$. Then

$$
\begin{aligned}
\bar{\gamma}_{k}=\bar{\delta}_{k} s_{k}-(-1)^{k-1} c_{k} & =\frac{1}{c_{k}}\left(-t_{k} c_{k-1} s_{k} c_{k}-(-1)^{k-1} c_{k}^{2}\right) \\
& =-\frac{1}{c_{k}}\left((-1)^{k-1} \frac{t_{k}}{\overline{\gamma_{k-1}}} s_{k} c_{k}+(-1)^{k-1} c_{k}^{2}\right) \\
& =\frac{(-1)^{k}}{c_{k}}\left(\frac{s_{k}}{c_{k}} s_{k} c_{k}+c_{k}^{2}\right)=\frac{(-1)^{k}}{c_{k}} .
\end{aligned}
$$

For all k, since $\delta_{k}=0$ and $x_{k}^{L Q}=W_{k-1} z_{k-1}$ with W_{k-1} having orthonormal columns, and since $\left(z_{k-1}\right)_{j}=\zeta_{j}$ is defined by $L_{k-1} z_{k-1}=\|b\| e_{1}$, we have $\zeta_{k}=0$ for k even.

Fig. 5. Error $\left\|x_{\star}-x_{k}\right\|$ generated by SYMMLQ applied to (46). Notice that every odd iteration makes no progress, resulting in a convergence plot resembling a step function.

Therefore $x_{2 k}^{L Q}=x_{2 k-1}^{L Q}$. Furthermore, since $\zeta_{k}=c_{k} \bar{\zeta}_{k}$ and $x_{k}^{C G}=x_{k}^{L Q}+\bar{\zeta}_{k} \bar{w}_{k}$ for some $\bar{w}_{k} \perp W_{k}$, we have $\zeta_{2 k}=0$ and $x_{2 k}^{C G}=x_{2 k}^{L Q}$. The identity $x_{2 k}^{C G}=x_{k}^{C}$ follows from (Saunders, 1995, Result 11).

We illustrate Theorem 2 using a small numerical example. We randomly generate A and b with $m=50, n=30, M=I$, and $N=I$ and run SYMMLQ directly on (46). We compute x_{\star} via Matlab's backslash operator, and compute $\left\|x_{k}-x_{\star}\right\|$ at each iteration to produce Figure 5. The resulting convergence plot resembles a staircase because every odd iteration produces a zero step.
9. Discussion. LNLQ fills a gap in the family of iterative methods for (2) based on the Golub and Kahan (1965) process. Whereas CRAIG is equivalent to CG applied directly to (2), LNLQ is equivalent to SYMMLQ, but is numerically more stable when A is ill-conditioned. The third possibility, MINRES (Paige and Saunders, 1975) applied to (2), is equivalent to LSQR (Paige and Saunders, 1982a, b) because both minimize the residual $\left\|A x_{k}-b\right\|$, where $x_{k} \in \mathcal{K}_{k}$ is implicitly defined as $A^{T} y_{k}$.

As in the companion method LSLQ (Estrin et al., 2017), an appropriate GaussRadau quadrature yields an upper bound on $\left\|y_{k}^{L}-y_{\star}\right\|$, and transition to the CRAIG point provides an upper bound on $\left\|y_{k}^{C}-y_{\star}\right\|$. However, it is x_{k}^{C} that is updated along orthogonal directions, and not x_{k}^{L}. Thus the upper bound on $\left\|x_{k}^{L}-x_{\star}\right\|$, which we developed for completeness, is deduced from that on $\left\|x_{k}^{C}-x_{\star}\right\|$. In our numerical experiments, both error bounds are remarkably tight, but $\left\|x_{k}^{L}-x_{\star}\right\|$ may lag behind $\left\|x_{k}^{C}-x_{\star}\right\|$ by several orders of magnitude and is not monotonic. Although the bound on $\left\|y_{k}^{C}-y_{\star}\right\|$ suggested by Arioli (2013) is tighter than might have been anticipated, the sliding window strategy allows us to tighten it further at the expense of a few extra scalar operations per iteration.

All error upper bounds mentioned above depend on an appropriate Gauss-Radau quadrature, which has been observed to become numerically inaccurate below a certain error level (Meurant and Tichý, 2014, 2015). This inaccuracy causes the loosening of the bounds observed in section 7. Should a more stable computation of the GaussRadau quadrature become available, all error upper bounds would improve, including those from the sliding window approach, which would become tight throughout all iterations.

USYMLQ, based on the orthogonal tridiagonalization process of Saunders, Simon, Commit 82ae2b0 by Dominique Orban on 2017-10-27 19:12:49 -0400

Table 1
Comparison of CRAIG and LNLQ properties on $\min \|x\|^{2}$ subject to $A x=b$.

	CRAIG	LNLQ			
$\left\\|x_{k}\right\\|$	$\nearrow(13)$ and (P, 1974)	non-monotonic, \leqslant CRAIG (Corollary 1)			
$\left\\|x_{\star}-x_{k}\right\\|$	$\searrow(11)$ and (P, 1974)	non-monotonic, \geqslant CRAIG (Corollary 1)			
$\left\\|y_{k}\right\\|$	$\nearrow(22)$ and (HS, 1952)	$\nearrow(22)$ and (PS, 1975), \leqslant CRAIG (EOS, 2016)			
$\left\\|y_{\star}-y_{k}\right\\|$	$\searrow(22)$ and (HS, 1952)	$\searrow(22)$ and (PS, 1975) \geqslant CRAIG (EOS, 2016)			
$\left\\|r_{\star}-r_{k}\right\\|$	not-monotonic	not-monotonic			
$\left\\|r_{k}\right\\|$	not-monotonic	not-monotonic			
monotonically increasing \searrow monotonically decreasing					
	EOS (Estrin et al., 2016), HS (Hestenes and Stiefel, 1952),				
	P (Paige, 1974), PS (Paige and Saunders, 1975)				

and Yip (1988), coincides with SYMMLQ when applied to consistent symmetric systems. For (2) it also coincides with LNLQ, but it would be wasteful to apply USYMLQ directly to (2).

Fong and Saunders (2012, Table 5.1) summarize the monotonicity of various quantities related to LSQR and LSMR iterations. Table 1 is similar but focuses on CRAIG and LNLQ.

Acknowledgements. We are grateful to Drew Kouri for the Matlab implementation of the PDE-constrained optimization problems used in the numerical experiments.

References.

M. Arioli. Generalized Golub-Kahan bidiagonalization and stopping criteria. SIAM J. Matrix Anal. Appl., 34(2):571-592, 2013. DOI: 10.1137/120866543.
J. E. Craig. The N-step iteration procedures. J. Math. and Physics, 34(1):64-73, 1955.
T. A. Davis and Y. Hu. The University of Florida sparse matrix collection. ACM Trans. Math. Software, 38(1):1:1-1:25, December 2011. DOI: 10.1145/2049662.2049663.
R. Estrin, D. Orban, and M. A. Saunders. Euclidean-norm error bounds for CG via SYMMLQ. Cahier du GERAD G-2016-70, GERAD, Montréal, QC, Canada, 2016.
R. Estrin, D. Orban, and M. A. Saunders. LSLQ: An iterative method for linear least-squares with an error minimization property. Cahier du GERAD G-2017-05, GERAD, Montréal, QC, Canada, 2017. To appear in SIAM J. Matrix Anal.
R. Estrin, M. P. Friedlander, D. Orban, and M. A. Saunders. Implementing a smooth exact penalty function for nonlinear optimization. Cahier du GERAD G-2018-XX, GERAD, 2018. In preparation.
R. Fletcher. A class of methods for nonlinear programming: III. rates of convergence. In F. A. Lootsma, editor, Numerical Methods for Nonlinear Optimization. Academic Press, New York, 1973.
D. C.-L. Fong and M. A. Saunders. CG versus MINRES: An empirical comparison. SQU Journal for Science, 17(1):44-62, 2012.
G. H. Golub and W. Kahan. Calculating the singular values and pseudo-inverse of a matrix. SIAM J. Numer. Anal., 2(2):205-224, 1965. DOI: 10.1137/0702016.
G. H. Golub and G. Meurant. Matrices, moments and quadrature II; how to compute the norm of the error in iterative methods. BIT, 37(3):687-705, 1997. DOI: 10.1007/BF02510247.
M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems. J. Res. Nat. Bur. Standards, 49(6):409-436, 1952.
W. J. Kammerer and M. Z. Nashed. On the convergence of the conjugate gradient
method for singular linear operator equations. SIAM J. Numer. Anal., 9(1):165-181, 1972. DOI: 10.1137/0709016.
C. Lanczos. An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. J. Res. Nat. Bur. Standards, 45:225-280, 1950.
G. Meurant and P. Tichý. A new algorithm for computing quadrature-based bounds in conjugate gradients, 2014. URL http://www.cs.cas.cz/tichy/download/present/ 2014Spa.pdf.
G. Meurant and P. Tichý. On the numerical behavior of quadrature based bounds for the A-norm of the error in CG, 2015. URL http://www.cs.cas.cz/~tichy/download/ present/2015ALA.pdf.
D. Orban and M. Arioli. Iterative Solution of Symmetric Quasi-Definite Linear Systems, volume 3 of Spotlights. SIAM, Philadelphia, 2017. DOI: 10.1137/1.9781611974737. URL http://bookstore.siam.org/sl03.
C. C. Paige. Bidiagonalization of matrices and solution of linear equations. SIAM J. Numer. Anal., 11(1):197-209, 1974. DOI: 10.1137/0711019.
C. C. Paige and M. A. Saunders. Solution of sparse indefinite systems of linear equations. SIAM J. Numer. Anal., 12(4):617-629, 1975. DOI: 10.1137/0712047.
C. C. Paige and M. A. Saunders. LSQR: An algorithm for sparse linear equations and sparse least squares. ACM Trans. Math. Software, 8(1):43-71, 1982a. DOI: 10.1145/355984.355989.
C. C. Paige and M. A. Saunders. Algorithm 583; LSQR: Sparse linear equations and least-squares problems. ACM Trans. Math. Software, 8(2):195-209, 1982b. DOI: 10.1145/355993.356000.
M. A. Saunders. Solution of sparse rectangular systems using LSQR and CRAIG. BIT Numerical Mathematics, 35:588-604, 1995. DOI: 10.1007/BF01739829.
M. A. Saunders, H. D. Simon, and E. L. Yip. Two conjugate-gradient-type methods for unsymmetric linear equations. SIAM J. Numer. Anal., 25(4):927-940, 1988. DOI: 10.1137/0725052.
G. W. Stewart. The QLP approximation to the singular value decomposition. SIAM J. Sci. Comput., 20(4):1336-1348, 1999. DOI: 10.1137/S1064827597319519.
R. J. Vanderbei. Symmetric quasi-definite matrices. SIAM J. Optim., 5(1):100-113, 1995. DOI: $10.1137 / 0805005$.

[^0]: *Version of November 13, 2018.
 ${ }^{\dagger}$ Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA. E-mail: restrin@stanford.edu.
 ${ }^{\ddagger}$ GERAD and Department of Mathematics and Industrial Engineering, École Polytechnique, Montréal, QC, Canada. E-mail: dominique.orban@gerad.ca. Research partially supported by an NSERC Discovery Grant.
 ${ }^{\S}$ Systems Optimization Laboratory, Department of Management Science and Engineering, Stanford University, Stanford, CA, USA. E-mail: saunders@stanford.edu. Research partially supported by the National Institute of General Medical Sciences of the National Institutes of Health, award U01GM102098.

[^1]: ${ }^{1}$ Available from github.com/restrin/LinearSystemSolvers

[^2]: Commit 82ae2b0 by Dominique Orban on 2017-10-27 19:12:49 -0400

