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LNLQ: AN ITERATIVE METHOD FOR LEAST-NORM PROBLEMS
WITH AN ERROR MINIMIZATION PROPERTY™

RON ESTRIN', DOMINIQUE ORBAN?, AND MICHAEL A. SAUNDERS®

Abstract. We describe LNLQ for solving the least-norm problem min |z| subject to Az = b.
Craig’s method is known to be equivalent to applying the conjugate gradient method to the normal
equations of the second kind (AATy =b, = ATy). LNLQ is equivalent to applying SYMMLQ. If
an underestimate to the smallest singular value is available, error upper bounds for both = and y are
available at each iteration. LNLQ is a companion method to the least-squares solver LSLQ (Estrin,
Orban, and Saunders, 2017), which is equivalent to SYMMLQ on the conventional normal equations.
We show that the error upper bounds are tight and compare with the bounds suggested by Arioli
(2013) for CRAIG. A sliding window technique allows us to tighten the error upper bound in y at
the expense of a few additional scalar operations per iteration. We illustrate the tightness of the
error upper bounds on a standard test problem and on the computation of an inexact gradient in the
context of a penalty method for PDE-constrained optimization.

Key words. Linear least-norm problem, error minimization, SYMMLQ), conjugate gradient
method, CRAIG.

AMS subject classifications. 15A06, 65F10, 65F22, 65F25, 65F35, 65F50, 93K24

1. Introduction. We wish to solve the least-norm problem

(1) minimize %HxHQ subject to Ax = b,
zeR"™
where | - | denotes the Euclidean norm, A € R™*", and the constraints are assumed to
be consistent. Any solution (x,,y,) satisfies the normal equations of the second kind:
T _ _ AT —1 AT [z] _[o
(2) AAy=b, z=Ay < [A ][y]_[b

The main objective of this paper is to devise an iterative method and accompanying
reliable upper bounds on the errors |z, — z,| and |y, — y.||-

Existing iterative methods tailored to the solution of (1) include CRAIG (Craig,
1955) and LSQR (Paige and Saunders, 1982a,b). LSQR does not provide any convenient
such upper bounds. CRAIG generates iterates z;, that are updated along orthogonal
directions, so that it is possible to devise an upper bound on the error in = (Arioli,
2013), but does not update the iterates y;, along orthogonal directions.

CRAIG and LSQR turn out to be formally equivalent to the method of conjugate
gradients (CG) (Hestenes and Stiefel, 1952) and MINRES (Paige and Saunders, 1975)
applied to (2), respectively, but are more reliable when A is ill-conditioned. By
construction, LNLQ is formally equivalent to SYMMLQ applied to (2). LNLQ inherits
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2 R. ESTRIN, D. ORBAN, AND M. A. SAUNDERS [Toc]|

beneficial properties of SYMMLQ), including orthogonal updates to y;,, cheap transfers
to the CRAIG point, and cheap upper bounds on the error |y, — v,|-

Motivation. Linear systems of the form (2) occur during evaluation of the
value and gradient of a certain penalty function for equality-constrained optimization
(Fletcher, 1973; Estrin, Friedlander, Orban, and Saunders, 2018). Our main motivation
is to devise reliable termination criteria that allow control of the error in the solution
of (1), thereby allowing us to evaluate inexact gradients cheaply while maintaining
global convergence properties of the underlying optimization method. Our approach
follows the philosophy of Estrin, Orban, and Saunders (2016) and Estrin et al. (2017)
and requires an estimate of the smallest singular value of A. Although such an estimate
may not always be available in practice, good underestimates are readily available in
many optimization problems, including PDE-constrained problems—see section 7.

Arioli (2013) develops an upper bound on the error in x along the CRAIG iterations
based on an appropriate Gauss-Radau quadrature (Golub and Meurant, 1997), and
suggests the seemingly simplistic upper bound |y, — y.| < |z — .||/, where o, is
the smallest nonzero singular value of A.

The remainder of this paper is outlined as follows: Section 2 gives the background
on the Golub and Kahan (1965) process and CRAIG. Sections 3—6 derive LNLQ from
the Golub and Kahan process, highlight relationships to CRAIG, derive error bounds,
and discuss regularization and preconditioning. Numerical experiments are given in
section 7. Extensions to quasi-definite systems are given in section 8, followed by
concluding remarks in section 9.

Notation. We use Householder notation: A, b, 8 for matrix, vector, scalar, with
the exception of ¢ and s denoting scalars that define reflections. All vectors are columns,
but the slightly abusive notation (i, ...,&;) is sometimes used to enumerate their
components in the text. Unless specified otherwise, |A| and |z| denote the Euclidean
norm of matrix A and vector z. For symmetric positive definite M, we define the
M-norm of u via |ul3; := u"Mu. We order the singular values of A according to
01 2092+ 2 Onin(m,n) = 0, and A" denotes the Moore-Penrose pseudoinverse of A.

2. Background.

2.1. The Golub-Kahan process. The Golub and Kahan (1965) process applied
to A with starting vector b is described as Algorithm 1. In line 1, 8yu; = b is short
for “B; = ||b; if B; = 0 then exit; else u; = b/B;”. Similarly for line 2 and the main
loop. In exact arithmetic, the algorithm terminates with & = ¢ < min(m, n) and either
Qgyq OF Bpyq = 0. Paige (1974) explains that if Az = b is consistent, the process must
terminate with 8,1 = 0.

Algorithm 1 Golub-Kahan Bidiagonalization Process
Require: A, b

: Blul =b

agvy = A uy

s for k=1,2,...do

Bry1tgy1r = Avy, — aguy,

T
Qpg1Vpr1 = AUy — Brp1vs
end for

@ g W
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We define U, := [ul Uk],Vk = [U1 vk]aa‘nd
ay
ay
o
By s P 2 Ly
(3) Ly := . . , Bp:= = 38 T|-
. . k+1€k
B g
Br 8
k+1

After k iterations of Algorithm 1, the following hold to machine precision:

(4a) AVy, = Uy By,

T T T T
(4b) AUpy1 = Vi By + 116,41 = Vg1 Ly,

while the identities UkT U, = I}, and VkTVk = I;, hold only in exact arithmetic. The
next sections assume that these identities do hold, allowing us to derive certain norm
estimates that seem reliable in practice until high accuracy is achieved in x and y.

2.2. CRAIG. For problem (1), the method of Craig (1955) was originally derived
as a form of the conjugate gradient (CG) method (Hestenes and Stiefel, 1952) applied
to (2). Paige (1974) provided a description based on Algorithm 1:

C C
(5) Lyty, = Brey, ry = Vity = Ty + Tk,
where ¢, := (7q,...,7) and the components of t;, can be found recursively from
T = Bi/ay, Tj = =BT/ (§ = 2). If we suppose t), = LTy¢ for some vector g5

that exists but need not be computed, we see that
(6) o = Viligk = AU = ATyy,

where yg = ng,? provides approximations to y. If we define D, = [d1 dk]
from LkDE = Uk,T, we may compute the vectors d; recursively from d; = u;/ay,

d; =u; — B;d;_y/a; (j = 2) and then update

c T C c
Y = DpLiyi = Dyt = yp—1 + 7idy,.

To see the equivalence with CG on (2), note that relations (4) yield

(7) AATUY, = AV L = Upyy BeLi, = Upyy Hy,
L. LT
(8) H, :—BkLi—[ k kT],
akﬁkﬂek

which we recognize as the result of k iterations of the Lanczos (1950) process applied
to AAT with starting vector b, where
a;  f

T Bs @
(9) Tk = LkL = 2 2
o By
Br
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4 R. ESTRIN, D. ORBAN, AND M. A. SAUNDERS [Toc]

is the Cholesky factorization of the Lanczos tridiagonal T}, with a; := a% and
a; = a? + ﬂ?, Bj := a;Bj41 for j = 2. Note that Tkgkc = Lkag,f = Lit, = Bie;.
CG defines y,ﬁj = ng,f, and so we have the same iterates as CRAIG:

c T C T, _C T C c
xy = Ay = AULYE = Vil Ui = Viti, = 221 + Ty,

Note that whereas Dy, is not orthogonal, 2§ in (5) is updated along orthogonal

directions and i
la 12 = > 7,
j=1

i.e., |z§ | is monotonically increasing and ||z, — z§ || is monotonically decreasing. Arioli
(2013) exploits these facts to compute upper and lower bounds on the error |z, — 2§ |
and an upper bound on |y, — 5 |.

Although it is not apparent in the above derivation, the equivalence with CG ap-
plied to (2) shows that |y§ | is monotonically increasing and [y, — 5 | is monotonically
decreasing (Hestenes and Stiefel, 1952, Theorem 6:3).

Unfortunately, the fact that y,fv is not updated along orthogonal directions makes
it more difficult to monitor |y, — kaH and to develop upper and lower bounds. Arioli
(2013) suggests the upper bound |y, — v | < |z, — 2§ | /o,, when A has full row rank.

LNLQ provides an alternative upper bound on |y, — y,?H that may be tighter.
The residual for CRAIG is

(10) ry =b— Azf = Byuy — AVity, = Ugt1(Brer — Byty) = —Bri1 Telg41-

Other results may be found scattered in the literature. For completeness, we gather
them here and provide proofs.

PROPOSITION 1. Let x, be the solution of (1) and y, the associated Lagrange
multiplier with minimum norm, i.e., the minimum-norm solution of (2). The kth
CRAIG iterates :(:kc and y,g solve

(11) minimize |z — x,| subject to x € Range(V},),
x

(12) minimize ||y — .|| , ;o subject to y € Range(U},)
y

respectively. In addition, xkc and y,? solve
(13)  minimize |z| subject to x € Range(V},), b — Az L Range(Uy).

r subject to y € Range(Uy), b — AATy 1 Range(Uy).

(14) minimize HyHAA
y

When A is row-rank-deficient, the (AAT)-norm should be interpreted as a norm
when restricted to Range(A).

Proof. Assume temporarily that A has full row rank, so that AAT is symmetric
positive definite. Then there exists a unique ¥, such that x, = ATy,k and

C T, C C
lzi =zl = 1A (k= )l = lyk — yull 47

In words, the Euclidean norm of the error in x is the energy norm of the error in y.
Theorem 6:1 of Hestenes and Stiefel (1952) ensures that yg is chosen to minimize the
energy norm of the error over all y € Range(U}), i.e., y,? solves (12).
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[Toc| LNLQ 5

To y € Range(Uy), there corresponds # = ATy € Range(A™U,) = Range(V, L} ) =
Range(V},) by (4) because L, is nonsingular. Consequently, CRAIG generates = as a
solution of (11).

When A is rank-deficient, our assumption that Ax = b is consistent ensures that
AATy = b is also consistent because if there exists a subpace of solutions z, it is
possible to pick the one that solves (2), and therefore b € Range(AA”). Kammerer
and Nashed (1972) show that in the consistent singular case, CG converges to the
minimum-norm solution, i.e., to y,, the solution of

minimize |y| subject to AATy = b.
y

Let r < min(m,n) be such that o, > 0 and 0,41 = --* = Opinm,n) = 0. Then

rank(A) = r = dim Range(A) and the smallest nonzero eigenvalue of AA” is o2. The
Rayleigh-Ritz theorem states that

0? = min {|ATw|? | w e Range(4), |w] = 1}.

By (4), each u;, € Range(A), and (7) and (9) imply that Uy AA™U, = T} in exact
arithmetic. Thus for any ¢ € R* such that [[¢| = 1, we have |Ugt| = 1 and

'l AA"U gt =TTt = 02,

so that the T are uniformly positive definite and CG iterations occur as if CG were
applied to the positive-definite reduced system P! AA"P,j = PTb, where P, is the
m x r matrix of orthogonal eigenvectors of AAT corresponding to nonzero eigenvalues.
Thus in the rank-deficient case, ykc also solves (12) except that the energy “norm” is
only a norm when restricted to Range(A), and z§ also solves (11).

To establish (13), note that (5) and (10) imply that z§ is primal feasible for
(13). Dual feasibility requires that there exist vectors Z, § and Z such that z =
zZ + ATUij, VkTE = 0 and z = V,Z. The first two conditions are equivalent to
VkT:,E =0+ VkTATUkQ = B;;FU,?HU,CQ = Lfgj. Because z = V. z, this amounts to
Z = L} . Thus dual feasibility is satisfied with z := ikc, g = gjkc and z := 0. The
proof of (14) is similar. |

3. LNLQ. We define LNLQ as equivalent in exact arithmetic to SYMMLQ (Paige
and Saunders, 1975) applied to (2). Whereas SYMMLAQ is based on the Lanczos (1950)
process, LNLQ is based on Algorithm 1. Again we seek an approximation y,f =", kgj,%.
The kth iteration of SYMMLQ applied to (2) computes g,f as the solution of

(15) min@gmize %HQHQ subject to H,z_lgj = Bieq,

where H{_; is the top (k — 1) x k submatrix of T}, (9).

3.1. An LQ factorization. In SYMMLQ, the computation of gj,f follows from
the LQ factorization of H ,{,1, which can be derived implicitly via the LQ factorization

of T}, = LkL,f. As L, is already lower triangular, we only need the factorization

_ _ Ny € M
(16) LI =MQ. M= | —[ kot ]
.. .. Ng€r—1 €k

M Ek
Commit 82ae2b0 by Dominique Orban on 2017-10-27 19:12:49 -0400
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6 R. ESTRIN, D. ORBAN, AND M. A. SAUNDERS [Toc]|

where Qg =Q12Q23...Qk_1, is orthogonal and defined as a product of reflections,
where QQ;_; ; is the identity except for elements at the intersection of rows and columns
j— 1 and j. Initially, &, = a; and @Q; = I. Subsequent factorization steps may be
represented as

j—2 j—1 J ji—2 J—-1 J j—2 j—1 J
i-1 [77;‘1 €j—1 5J ] 1 [ﬁjl €j—1 ]
= )
i Qj € 5j &
Sj _Cj

where the border indices indicate row and column numbers, with the understanding
that n;_, is absent when j = 2. For j > 2, Q;_, ; is defined by

_2 2 —
g1 =\ +B, ¢ =& 1/ej 1, s;j=DB5/gj-1,

and the application of Q;_, ; results in

We may write Hy_y = [Lj_1Li_y  oj_1Byer—1] = Li—1 [Li—1  Brej—1] - From (16),
Li_ _ M,
Ly = [ k1 Biex 1] = [ R ]Qk = [Li_y Brer1] =M1 0]Qy.
Qg Mk€k—1 €k
Finally, we obtain the LQ factorization
(18) Hioy = [Lia My 0] Q.

3.2. Definition and update of the LNLQ and CRAIG iterates. In order
to solve H,?_lg,’;“ = Bie; using (18), we already have L,_it,_; = fB,e;, with the
next iteration giving 7, = —fB,7,_1/a;. Next, we consider M;_12,_; = t;,_; and

find the components of 2,y = ((y,..., (1) recursively as (; = 7y/eq, (; = (7, —

n;¢i-1)/€; (j = 2). This time, the next iteration yields ¢, = (7, — 174(r—1)/2) and
Cr = Ckék/Ex = 1k Thus,

(19) o = Qi [Z’“Ol] and i = Qf {z’gkl} = Qi

solve (15) and Tys = B, e, respectively, matching the definition of the CRAIG iterate.
By construction, y,? = ngj,l;‘ and yg = ngf. We define the orthogonal matrix

We =UQk = [w1 -+ wpy W] =[Wiy @], @ =1,

so that (19) with z,_; and 2, := (zj,_1, (z) yields the orthogonal updates
B P
(20) K =W, [ ko 1] = Wi12e-1 = Yr-1 + Geo1w1,

C _ 7= s L 5 -
(21) Ur = Wiz = Wi12p 1 + Gy, = Yy, + Wy
Because W, is orthogonal, we have
k-1
L2 2 2 2 Ly2 | 72
(22) luil? = lzeal® = D, ¢ and [y I? = Jui® + G-

Jj=1
Commit 82ae2b0 by Dominique Orban on 2017-10-27 19:12:49 -0400
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Thus |y | = |yrl, |yr| is monotonically increasing, |y, — yf| is monotonically
decreasing, and |y, —yr | = |y, —y5 ||, consistent with (Estrin et al., 2016, Theorem 6).
Contrary to the update of yg in CRAIG, y,g is updated along orthogonal directions
and yg is found as an orthogonal update of y,f The latter follows from the transfer
procedure of SYMMLQ to the CG point described by Paige and Saunders (1975).
At the next iteration,

k k+1
(Wi Wir] = [0 wgsr] lckﬂ Sk“]
Sk+1 —Ck+1

= Wg = Cpp1Wg + Sp1Upy1s

Wiyl = Sk41Wk — Cr1 Ukt 1-

3.3. Residual estimates. We define the residual

rpi=b—Axr, =b— AATngk = Upi1(Brer — Hyyy)

using line 1 of Algorithm 1 and (7), where g, is either g,f or g,f. Then for k > 1,

_ _ — 2
Tkyzf = LkLzyllg = LkMkaQg [ ko 1]

[ e
Brek—1 | |Mk€k—1 Ek 0

_ [ Ly_4 ] [ t—1 ] _ [ Bre1 ]
ﬁke;{—l ag | [MCr—1 BrTr—1 + i1’

where we use (16), the definition of ¢,_; and z,_;, and (19). Note also that the
identity Qe = sper_1 — cpey, yields

(23)

T_L T AT | k—
ek = e, Qk [ ko 1] = 5,Ck—1-

The above and (8) combine to give

0

e L.LF 1.
= Upr ([ﬂlo 1} — [ k kT] y;f) = —Ups1 | BiTi—1 + apfeCroy

B3 e
Prsrei Br+15kCk—1

— (BrTh—1 + apMiCr_1)uy — Bk+13ka71uk+1~

By orthogonality, the residual norm is cheaply computable as

Similarly,

L2 2 > 2
e I” = (Bemi—1 + emielr—1)” + (Betr156Ck—1)"-

_ pre Ty, o\ 0 T_
= Uk ([ 101] - [@Mef] yk) = — Ui [51@4-1@5] Qk Zk

2 0 Zk1:|
— U -
Pryalin [Ske;{—l - ckef] [ Ck

~Brr1(85Ck—1 — Cp)Ukt1,

Commit 82ae2b0 by Dominique Orban on 2017-10-27 19:12:49 -0400
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where we use Tyis = Bie; (by definition) and (19). Orthogonality of the u; yields
orthogonality of the CRAIG residuals, a property of CG (Hestenes and Stiefel, 1952,
Theorem 5:1). The CRAIG residual norm is simply

cn = _
Ik | = Brs1 IsCe—1 — exlil-
In the next section, alternative expressions of |rf|| and |rf|| emerge.

3.4. Updating = A"y. The definition y;, = Uyj;, and (4) yield z;, = A"y, =
ATngk = VkLgyk. The LQ and CRAIG iterates may then be updated as

_ Zlo—
wy = ViLi Gk = ViLi Qs [ g 1]

v AT |1 My Zh_1
v [ v ]
= Vi i My_12—1 + M1

(25) = Vi_1lp—1 + MeCr—1Vg,

and similarly,

M, Zp_ _ =
(26) ;z:g =V, [nk:g 11 5k] [ ’Z_kl] = :z:ﬁ + &,.CLv-

Because V, is orthogonal, we have

k-1 k—1
(27) EA Z sz +(Gmr)” and 2] = Z 73‘2 + (o + 81G)%
j=1 j=1

Both J:£ and xkc may be found conveniently if we maintain the delayed iterate
Tp_q =TV + -+ Tp_1Vp_1 = Tp_o + Tp_1Vs_1, for then we have the orthogonal
updates

~ C ~ - =
(28) o =g+ mlervr and  zf = Fg_q + (Ce1 + ExCr)Vk-

PROPOSITION 2. We have &,(; = 7, and for k > 1, ni.Ce_y + E1Cp = Tk
Therefore,

k

@} @}

L = ZTk”k and = =B 1TRUk 1,
Jj=1

which are the expressions for :L‘kc and ’I”]? in standard CRAIG.

Proof. The identity for k = 1 follows from the definitions of &, ¢y, and 7. By
definition of (j,, we have £,(;, = 7, — NpCr_1, i-€., NpCu_1 + €1, = 7. The expressions
for 2§ and r§ follow from (28) and from (24), the definition of B4, and (17). |

The expressions for mkc and r,? in Proposition 2 coincide with those in standard
CRAIG. In particular, we recover the property that :Ckc is updated along orthogonal
directions, so that |z | is monotonically increasing and |z, — 2§ | is monotonically
decreasing, as stated by Paige (1974). Finally, (25) and Proposition 2 give 21 =
i1 + M1 V-
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Proposition 2 allows us to write 7, — 75(y_1 = €,Cs. Because B, Ti_1 = —Qp Tk,
the LQ residual may be rewritten

. _
7% = (T — MeCho1)Uk — Brt15kCh—1Up11

= €LCKUE — QBrg1SkCh—1Ukt15

. L _ =
and correspondingly, |7y | = ak((€x)* + (Bry1skGe-1)?)-
We are now able to establish a result that parallels Proposition 1.

PROPOSITION 3. Let x, be the solution to (1) and y, the associated Lagrange
multiplier with minimum norm, i.e., the minimum-norm solution of (2). The kth

LNLQ iterates y,f and xﬁ solve
(29) miniymize ly — .| subject to y € Range(AA™U,_,)

30 minimize | — x, r.t subject to x € Range(V,_;),
(AAT) &

respectively. In addition, y,f and xé solve
(31) miniymize ly|l subject to y € Range(U,), b— AATy L Range(Uy_;),

(32) miniwmize HxH(AAT)T subject to = € Range(V},), b — Az L Range(Uj_,).

Proof. By definition, @,f solves (15). Hence there must exist ¢ such that g,f =
H,_t and HkT_ly,f = (ye,. By definition of H;,_; and (4), we have y,f = ngj{; =
U.B, Li t=AV, L} i=A44"U, |t

The above implies that y;f is primal feasible for (29). Dual feasibility requires that
Ul AA"(y —y,) = 0, which is equivalent to UL_;rf = 0 because AATy, = b. The
expression (23) confirms that dual feasibility is satisfied.

With 57 € Range(A), we have yf = (A")" 27 and then (30) follows from (29).

Using (23), we see that yr is primal feasible for (31). Dual feasibility requires that
y;? =p+ AATUk_lq and ng = 0 for certain vectors p and ¢, but those conditions
are satisfied for p := 0 and ¢ := . Since yp = (AN zf, we obtain (32) from (31). 0O

Note the subtle difference between the constraints of (13) and (32).
COROLLARY 1. For each k, |zg| < |=% | and |z§ — =] < |z — ..

Proof. By (4), Range(V},) = Range(A’U),) because L, is nonsingular. Thus
the constraints of (32) amount to b — AA"U, 5 € Range(Uy_,)", for § such that
z = ATU, 5. Because dim Range(U,_;)" decreases as k increases, the objective |z|
increases monotonically. In addition, Range(U,)" < Range(Uy_;)" and therefore

|lzr| < |25l If we compare (11) with (30), we see that |z —z,| < |zF — | because
Range(V},_;) < Range(V},). d

3.5. Complete algorithm. Algorithm 2 summarizes LNLQ. Note that if only
the x part of the solution is desired, there is no need to initialize and update the
vectors wy, Wy, y,f and y,? unless one wants to retrieve = as ATy at the end of the
procedure. Similarly, if only the y part of the solution is desired, there is no need
to initialize and update the vectors xﬁ and a:g The update for a:kcﬂ in line 18 of
Algorithm 2 can be used even if the user wishes to dispense with updating xﬁ
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Algorithm 2 LNLQ

1: Biu; =b, aqv; = ATul begin Golub-Kahan process
2: & =qq, 7 = P/aq, G =T1/8 begin LQ factorization
3: wyp = 0, ﬂ)l = Uq
L c -
4y =0,y =Gu;
L C

5 27 =0, xy =10

6: for k=1,2,...do

7 Bry1upy1 = Av, — aguy, continue Golub-Kahan process

. '
8: Apy1Vrs1 = A Uy — Bry1vk
1 , . L

9: ep = (Er + Bis1)? continue LQ factorization
10: Chi1 = Ek/Eks Skr1 = Brr1/Ek

11 Me+1 = Qk+1Sk+1> €1 = —Opy1Cr41

12: Ct = Chs1Ck Char = (Thgp1 — Mos1Ch)/Enr1 prepare to update y
13: Wy = Cpyp1 Wk + Spy1Uk41, Wil = Spp1Wg — Crp1U1

L L
14: Ykt1 = Yk T CkWx update 1y
C L = _

150 Ypy1 = Yrgr T Cer1What

16: x£+1 =g + Mey1CpVka1 update x
17: Thy1 = —Br1Th/Vt1

. _ . C
18: Tht1 = T + Tp41Vk41
19: end for
4. Regularization. The regularized least-norm problem is
o 2 2 :
(33) minimize 3 (||lz|° + [s]|) subject to Az + As = b,
zeR", seR™

which is compatible for any A # 0. Saunders (1995, Result 7) states that applying
Algorithm 1 to A := [A Al ] with initial vector b preserves U,,. We find corresponding

\7k and lower bidiagonal ﬁk by comparing the identities

ATl [V LT R I
(34) |:>\I:|Uk—|: Uk:| |:>\I and Vi Uk_VkLk7

the first of which results from (4)A and the second from Algorithm 1 applied to A. At
iteration k, we apply reflections @}, designed to zero out the AI block, resulting in

T o T o . B
[Vk Uk] [i?] B [Vk Uk] Qng [il;] = [Vk Yk] [Lok] = Vka.

Saunders (1995) uses Qy to describe CRAIG with regularization under the name
extended CRAIG. If we initialize \; := ), the first few reflections are illustrated as
in Figure 1, where shaded elements are those participating in the current reflection
and grayed out elements have not yet been used. Two reflections per iteration are
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Gy 0
_ BQ [eD) 5\2 A
A 33 Qg A
A | By ay A
] [ & 0 ]
By Gy 0 0
A - BS (0%} 5\3 )\
A By oy A
_ - 4 0 _
By G 0 0
As - By ay 0 0 ’
A | 34 Qy 5\4 A

Fic. 1. Lllustration of a few steps of the factorization in the presence of regularization.

necessary, and the situation at iteration k may be described as

k 2k

2k+1

k

k [ O )\k: 1 [ék
k+1 6k+1 A Sk

2k 2k 2k+1 k 2k 2k+1 2k 2k+1

—Cr | [ S —Ck Bry1 Apt1 A Sk —Cg

k 2k 2k+1

_ lo}k 0 ]
Bre1 0 Apyr

The first reflection is defined by dy := \/ar + A5, & := ag/dy, 8 := A/dy, and
results in Bkﬂ = ¢,8,41 and 5\k+1 = 53,841 The second reflection defines A, :=

A AR + A% & = S\kﬂ/)\kﬂ, S := M Apy1, and does not create a new nonzero.
Ounly the first reflection contributes to Vj:

(35)

k 2k k 2k k 2k
’Uk 0 ék ‘§k . ékvk: ‘§kvk
0 Up ‘§k: _ék §kuk —6kuk ’

where column k is 0y,.
Iteration k of LNLQ with regularization solves (15) but Hi_, is then the top
(k — 1) x k submatrix of

(L, ] [

In (16), we compute the LQ factorization of ﬁf instead of Lf, but the details are
identical, as are the updates of yF in (20) and ye in (21). Because U, is unchanged
by regularization, the residual expressions (23) and (24) remain valid. Subsequently,

|

L
Ty

L
Sk

|

Ly

M} = LiLE + X1 =T, + 1.

AT _ N oA
= £\ Uiy = ViLi; Ug»
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but we are only interested in the top half of xﬁ Let the top n x k submatrix of ‘7k be

We conclude from (35) that @w; = ¢;v; for j = 1,..., k. The update (26) remains valid
with v, replaced by .

5. Error upper bounds.

5.1. Upper bound on |y, — yi|. By orthogonality, |y, —yi |* = Jy.[* — k|
If A has full column rank, y, = (AA") b and |y,]? = b* (AAT) "b. If we define

FIAAT) =" fo)aiai
im1

for any given f : (0, o) — R, where g; is the ith left singular vector of A, then
ly.? = b7 F(AAT)b with f(€) := £ 2. More generally, as y, is the minimum-norm
solution of (2), it may be expressed as

m

e =2 f(o3) (@ b) gy,

=7

where o, is the smallest nonzero singular value of A, which amounts to redefining
f(&) :=0at £ =0. Because b = S;u;, we may write

m

Hy*HQZﬂ%Zf(O'Z)M?v i t= qgulu Z:Lam
i=1

We obtain an upper bound on |y, | by viewing the sum above as a Riemann-Stieltjes
integral for a well-chosen Stieltjes measure and approximating the integral via a Gauss-
Radau quadrature. We do not repeat the details here and refer the reader to Golub
and Meurant (1997) for background.

The fixed Gauss-Radau quadrature node is set to a prescribed o € (0, 0,.). We
follow Estrin et al. (2017) and modify L, rather than T},. Let

> Ly, O ]
36 L = .
( ) b [5]&%1 Wi,

Note that L differs from L in its (k, k)th element only, and

~ ~ o~ Ty, Br_1€51
T, :=L,L{ = [_ k=1
b Wk 5k—1€£—1 513 +w2

(with Bj,_; defined in (9)) also differs from T}, in its (k, k)th element only. The Poincaré
separation theorem ensures that the singular values of L;, lie in (o,., 01). The Cauchy
interlace theorem for singular values ensures that it is possible to select wy, so that the
smallest singular value of (36) is 0.

The next result derives from (Golub and Meurant, 1997, Theorems 6.4 and 12.6).

THEOREM 1 (Estrin et al., 2017, Theorem 4). Let f : [0, 00) — R be such
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that fPTD(€) <0 for all € € (62, 6%) and all j > 0. Fiz 0oy € (0, 0,). Let Ly
be the bidiagonal generated after k steps of Algorithm 1 and wy, > 0 be chosen so
that the smallest singular value of (36) is 045. Then,

b" F(AAT)b < Bier f(LyLi)er.
The procedure for identifying wy, is identical to that of Estrin et al. (2017) and

yields wy, = \/ JeQSt — Ogst Brbap_2, where 09, is an element of a related eigenvector.

Application of Theorem 1 to f(§) := €2 with the convention that f0):=0
provides an upper bound on |y, |?.

COROLLARY 2. Fix 0., € (0, 0,). Let Ly, be the bidiagonal generated after

k steps of Algorithm 1 and wy > 0 be chosen so that the smallest singular value
of (36) is 05 Then,
v mgp, =2
lyel* < Bier (LiLi) “er.
In order to evaluate the upper bound stated in Corollary 2, we modify the LQ
factorization (16) to

f;‘: - [L%—1 Bkek—l] _ |:Mk—1 N] |:Qk1 1] _ Mka,

~ T
Wk MCk—1 CEk
where 7, = wys), and &, = —wyc,. Define £, and Z;, such that
(37) zk?k = ﬁlel and Mkik = tNk

The updated factorization and the definition of f yield
2 2107 77 -2 2 1T -1 2 1T 2 _ oy 2
lyel™ < BIIN(LpMiQy) enl” = B[ My Ly "er|” = | My 6™ = [Z]"
Comparing with the definition of ¢, and z;, in subsection 3.2 reveals that £, = (t,_1, 7%)

and %, = (%1, {) with %, = —B,7,_1/wy and &, = (%, — ,Cs—1)/2). Combining
with (22) yields the bound

L2 2 2 2, 72 2 _ 2
(38) lye =™ = lyel™ = 2k l” < lzeall™ + G = 2o = G-

5.2. Upper bound on |y, —y5 |. Estrin et al. (2016, Theorem 6) establish that
({7 *_ykc | < |ly. — y#|| so that the bound from the previous section applies. However,
with (;, is defined in subsection 3.2 they also derive the improved bound

(39) Iy — i > < G - G-

Estrin et al. (2016) provide further refinement over this bound by using the sliding
window approach. O(d) scalars can be stored at each iteration, and for O(d) additional

work a quantity Hlid) can be computed so that
Cy2 _ 2 =2 d
(40) Iy = I < G = G — 20"
Note that the definitions of ¢, sy, (x, and ;, match those in (Estrin et al., 2016).

5.3. Upper bound on |z, — xf |. Assume temporarily that A has full column
rank. By orthogonality in (25), |z, — 2% |* = |#,]* — |25 |*>. We may then use

2 T 2 2 2
212 = LTI = [l 47 = 1612, 47 .

Applying Theorem 1 to f(§) := & ~! redefined such that f (0) := 0 provides an upper
bound on [z,]? in the vein of (Golub and Meurant, 1997, Theorems 6.4 and 12.1).
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14 R. ESTRIN, D. ORBAN, AND M. A. SAUNDERS [Toc]

COROLLARY 3. Fiz o, € (0, 0,.). Let L;, be the bidiagonal generated after

k steps of Algorithm 1 and wy > 0 be chosen so that the smallest singular value
of (36) is 0.4 Then,

T, 5 FT\~1
|z.[? < Biei (LyLy) ey
We use (37) to evaluate the bound given by Corollary 3 as
T,5% 77\~ 1 ¥ g
Bret (Leli) er = BiLy er]® = ],
which leads to the bound
c ~ o
(41) e R Y e I e e

This bound must coincide with that of Arioli (2013), which he derived using the
Cholesky factorization of Tj,.
Note that Arioli (2013, Equation (4.4)) proposes the error bound

c - c - c - C
42)  ly =k | = 1La (@0 = @) < omin (Li) ™ 2w — 2| < 07 2, — 2k

It may be possible to improve on (42) by maintaining a running estimate of o, (Ly,),
such as the estimate min(ey,...,e,_1,&;) discussed by Stewart (1999).

5.4. Upper bound on |z, — :cﬁ” Using 2& = 25 | + n.¢._ 1 0p, we have

tp_1
Vn (tn - |:77ka—1 :|>
0

Thus, using the error bound in (41) we obtain

2
c
=[x, — xp H2 + (T — MeCe_1)’

2, — aF| = '

(43) lo, — 2 |* <7 —7it + (7 — mC1)”.

6. Preconditioning. As with other Golub-Kahan-based methods, convergence
depends on the distribution of {o;(A)}. Therefore we consider an equivalent system
NﬁéAATNféN%y = Nﬁéb, where N~ A has clustered singular values.

For the unregularized problem (2), to run preconditioned LNLQ efficiently we
replace Algorithm 1 by the Generalized Golub-Kahan process (Arioli, 2013, Algorithm
3.1). We seek a preconditioner N > 0 such that N ~ AAT, and require no changes
to the algorithm except in how we generate vectors u; and v,. This is equivalent to
applying a block-diagonal preconditioner to the saddle-point system

SR I M ]

For a regularized system with A # 0, we need to solve a 2x2 quasi-definite system

(-1 AT [= 0
44 = .
() | A A2I} [y] [b]
We cannot directly precondition with Generalized Golub-Kahan as before, because

properties analogous to (34) do not hold for N # I. Instead we must precondition the
equivalent 3x3 block system

I -1 AT [= I 0
I —I M| |s]= I 0],
N | A A y N |

where N ~ AAT + N’ is a symmetric positive definite preconditioner. In effect, we
must run preconditioned LNLQ directly on A = [A Al ]
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— True LNLQIin x
—— LNLQ Upper bound in x

——True CRAIG in x
—— CRAIG Upper bound in x

ook 1010k

10715 L L L L L 10718 L L L L L
0 20 40 60 80 100 120 0 20 40 60 80 100 120

—True LNLQiny
—— LNLQ Upper bound in y

——True CRAIG iny
10710 - 10— CRAIG Upper bound in y

GRAIG Upper bound in y, d=5
—— CRAIG Upper bound in y, d=10
—— CRAIG Avrioli bound in y

L L L L L L L L
0 20 40 60 80 100 120 0 20 40 60 80 100 120

Fic. 2. Error in x (top) and y (bottom) along the LNLQ (left) and CRAIG iterations (right).
The blue line is the exact error. The red line represents error bounds using quadrature, the green line
is the error bound (42) from Arioli (2013), while the yellow and magenta lines employ the sliding
window improvement (40) with d =5 and 10.

7. Implementation and numerical experiments. We implemented LNLQ in
Matlab', including the relevant error bounds. The exact solution for each experiment
is computed using Matlab’s backslash operator on the augmented system (1). Mentions
of CRAIG below refer to the transfer from the LNLQ point to the CRAIG point.

7.1. UFL problem. Matrix Meszaros/scagr7-2c from the UFL collection (Davis
and Hu, 2011) has size 2447 x 3479. We set b = e/4/m, the normalized vector of ones.
For LNLQ and CRAIG we record the error in both z and y at each iteration using the
exact solution, and the error bounds discussed above using oo, = (1 —107") o5 (A4),
where o, (A) was provided from the UFL collection. The same o is used to evaluate
the bound (42). Figure 2 records the results.

We see that the LNLQ error bounds are tight, even though the error in x is not
monotonic. In accordance with Proposition 1, the CRAIG error is lower than the
LNLQ error in «, but it is also the case in y. The CRAIG error in z is tight until
the Gauss-Radau quadrature becomes inaccurate, a phenomenon also observed by
Meurant and Tichy (2014, 2015).

Regarding the CRAIG error in y, we see that the error bounds from (39) and (42)
are close to each other, with (42) being slightly tighter. We observed that the simpler
bound (42) nearly overlaps with the bound (39) on other problems. However, (40)
provides the ability to tighten (39), and even small window sizes such as d = 5 or
10 can improve the bound significantly until the Gauss-Radau quadrature becomes
inaccurate. Thus, the sliding window approach can be useful when an accurate estimate

! Available from github.com/restrin/LinearSystemSolvers
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of oin(A) is available if early termination is relevant, for example when only a crude
approximation to x and y is required.

7.2. Fletcher’s penalty function. We now apply LNLQ to least-norm problems
arising from using Fletcher’s exact penalty function (Fletcher, 1973; Estrin et al., 2018)
to solve PDE-constrained control problems. We consider the problem

minimize 3 J lu — uy|® dz + %af 7> dzx
Q Q

(45) subject to V- (zVu) = —sin(wz;) sin(wzy) in Q,
u=0 on 09,
where w = 7 — %, Q=[-1, 1]2, and a > 0 is a small regularization parameter. Here,

u might represent the temperature distribution on a square metal plate, u, is the
observed temperature, and we aim to determine the diffusion coefficients z so that
u matches the observations in a least-squares sense. We discretize (45) using finite
elements with triangular cells, and obtain the equality-constrained problem

minimize f(@) subject to c(@) = 0.

2 2
Let p be the number of cells along one dimension, so that u€ R? and z € RP+Y

2
are the discretizations of u and z, 4 := (u, 2), and c(u) € R? . We use p = 31 in the
experiments below. Let A(u) := [A, A,] be the Jacobian of c(a).
For a given penalty parameter o > 0, Fletcher’s exact penalty approach is to

minimize ¢, (@) := (@) — c(@)" y, (@)

2
where y, (i) € arg min 3 HVf(ﬁ) - A(ﬂ)TyH +oc(a)'y.
y

In order to evaluate ¢, (@) and V¢, (@), we must solve systems of the form (2) with
b= —c(u) and A = A(u). Note that by controlling the error in the solution of (2), we
control the inexactness in the computation of the penalty function value and gradient.
In our experiments, we evaluate b and A at @ = e, the vector of ones. We first apply
LNLQ and CRAIG without preconditioning. The results are summarized in Figure 3.

We observe trends like those in the previous section. The LNLQ bounds are quite
accurate because of our accurate estimate of the smallest singular value, even though
the LNLQ error in z is not monotonic. The CRAIG error in z is quite accurate until
the Gauss-Radau quadrature becomes unstable, which results in a looser bound. The
latter impacts the CRAIG error bound for y in the form of the plateau after iteration
250. The error bound (42) is slightly tighter than (39), while if we use (40) with
d = 20, we achieve a tighter bound until the plateau occurs.

We now use the preconditioner N = AuAg, which corresponds to two solves of
Poisson’s equation with fixed diffusion coefficients. Because o, ((A,4,) TAAT) =
Omin(I + (A,AD) 724, A7) > 1, we choose oo = 1. Recall that the y-error is now
measured in the N-energy norm. The results appear in Figure 4.

We see that the preconditioner is effective, and that o, = 1 is an accurate
approximation as the LNLQ error bounds are extremely tight. The CRAIG error
bounds are very tight as well.

8. Extension to symmetric quasi-definite systems. Given symmetric and
positive definite M and N whose inverses can be applied efficiently, LNLQ generalizes
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10° T T r T 10° T T T -

rue LNLQ in x True CRAIG in x
NLQ Upper bound in x CRAIG Upper bound in x

100 F 4 100 F ]
105 1 10°F 1
10'10 k - 10—10, -

10 -15 1 1 1 1 1 1 10 -15
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
10° T T T T T T 10° T T T T T T
100 g 100 ]
1051 1 10° 1
10710 1 ] 1010 ]
—— True CRAIG iny
—— CRAIG Upper bound iny
CRAIG Upper bound in y, d=20
—— CRAIG Arioli bound in y
10 -15 1 1 1 1 1 1 10 -15 1 1 1 1 1 1
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350

Fic. 3. Error in x (top) and y (bottom) along the LNLQ iterations (left) and CRAIG iterations
(right). The red line represents error bounds using quadrature, the yellow line uses a sliding window
of d = 20, and the green line is (42).

5
10° T - - T . . . . 10 T T T T T - - -
- True CRAIG in x
—— LNLQ Upper bound in x CRAIG Upper bound in x

100 ] 100F 1
10°F 1 105 4
10-10 . d 10—10 | Jd
0k ] 1015 F ]

10-20 1 1 1 1 n n n n 10—20 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 2 4 6 8 10 12 14 16 18

10° T T T T T ' T T 10° T T T T T T T T

True LNLQiny
LNLQ Upper bound in y

100k 1 100F 1
1075 1 10°F 1
o1 F ] 1010k 4

107 ] 1015 F ]

1020 L L L L L L L L 1020 L L L L L L L L

Fic. 4. Error in x (top) and y (bottom) along the preconditioned LNLQ iterations (left) and
CRAIG iterations (right). The red line represents error bounds using quadrature with o,y =1, and
the green line is the error bound from Arioli (2013).

Commit 82ae2b0 by Dominique Orban on 2017-10-27 19:12:49 -0400



164

465

48%
485
486
487
488
489

490
191
492
493

494

495
496

18 R. ESTRIN, D. ORBAN, AND M. A. SAUNDERS [Toc]|

to the solution of the symmetric and quasi-definite (Vanderbei, 1995) system

x M A" [z] [0

4 = =
B el =1 A=)
which represents the optimality conditions of both
(47) minimize %Hx“?\/[ + %HyH?\; subject to Ax — Ny = b,

T,y

o 2 2

(48) minimize slAz — by + 3]
The only changes required are to substitute Algorithm 1 for the generalized Golub-
Kahan process (Orban and Arioli, 2017, Algorithm 4.2) and to set the regularization
parameter A := 1. The latter requires one system solve with M and one system solve
with N per iteration.

Applying LSLQ (Estrin et al., 2017) to (48) is implicitly equivalent to applying
SYMMLQ to the normal equations

(49) (ATNT'A+ M)z = ATN" b,

while applying LNLQ to (47) is equivalent to applying SYMMLQ to the normal
equations of the second kind:

(50) (AM'AT £ N)y =, Mz = ATy,

where we changed the sign of y to avoid distracting minus signs.
In lieu of (4), the generalized Golub-Kahan process can be summarized as

(51&) AVk. = MUk+1Bk,
(51b) AUy = NV, Bi + a1 Nvgyrehr = NV Lig,

where this time U} MU, = I and V;' NV, = I in exact arithmetic. Pasting (51)
together yields

e | A N 1 [ | A 8 PR O
A -—-N U N Ue| | Ly —1 Brr1Nugiq | 2
M AT W, M Vi I Bf g1 Mogii|
= + €2k41-
A —-N Ui N Upi1| | By —1 0
These relations correspond to a Lanczos process applied to (46) with preconditioner
blkdiag(M, N). The small SQD matrix on the right-hand side of the previous identities

is a symmetric permutation of the Lanczos tridiagonal, which is found by restoring
the order in which the Lanczos vectors (v, 0) and (0, u;) are generated:

1 oy
a; —1 B
T, By 1 - | Ta Brerea
2t e o Br 162k I
ap =1 Bry
Br+1 1

Saunders (1995) and Orban and Arioli (2017) show that the CG iterates are well-
defined for (46) even though K is indefinite. In a similar vein, Orban and Arioli
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(2017) establish that applying MINRES to (46) with the block-diagonal preconditioner
produces alternating preconditioned LSMR, and LSQR iterations, where LSMR is
applied to (49) and LSQR is applied to (50).

It turns out that SYMMLQ applied directly to (46) with this preconditioner
satisfies the following property: even iterations are CG iterations, while odd iterations
take a zero step and make no progress. Thus every other iteration is wasted. The
generalized iterative methods of Orban and Arioli (2017), LSLQ or LNLQ should be
used instead. The property is formalized in the following result.

THEOREM 2. Let xiQ and ng be the iterates gemerated at iteration k of
SYMMLQ and CG applied to (46), and xkc be the iterate defined in (6). Then
fork>=1, acékQ_l = xékQ = xng = xg

Proof. For brevity, we use the notation from (Estrin et al., 2016, §2.1) to describe
the Lanczos process and how to construct the CG and SYMMLQ iterates. By (51),
T, and the L factor of the LQ factorization of T _, have the form

1ty

ty —1 tg B,
ty 1 - 2 12
— _ €3 O
T, = : , L, = 8 93 -“/3 . ,
k S
k-1 - :
tp (—1) €r—1 Ok_1 Yr—1
trt1

where each t; is a scalar. For k > 2, the LQ factorization is accomplished using
reflections defined by

V-1 by il T s Ye-1 0
6]@ (—1) B |:5k: Ck::| = 5k _’_Yk: )
0 tha1 €k41 Ogt1
with ¥, = 1, 6 = to, ¢ = j{/::i’ and s, = %

k
We show that ¢; = 0 for all j by showing that ¥, = (_Ci) for k > 2, because in
that case

O = Opey, — (1) ls = (tkck—l)%_l - (71)1@71&

V-1 V-1
t _ _
Ve-1
2 2 - = 3
For k = 2 we have 75 = 1 +1t5 and ¢y = %, sol‘illat g = 0389+ Cy = %—'—712 =y = é
Proceeding by induction, assume ¢;,_; = ) Then

Ve—-1

_ sz ke o
Ve = O — (1) e = = (*tk%qskck - (=1) 10%)

k-1 k=1 2
=—c ((—1) =ospeg + (—1) Ck)

(=" [ Sk 2\ _ (="
x (CkSka-FCk = PP

For all k, since ¢, = 0 and xé Q= Wi_12,_1 with Wj,_; having orthonormal columns,
and since (z;_1); = (; is defined by Lj_12;,_1 = [|blle;, we have ¢, = 0 for &k even.
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10°

10'10 L

10'15
0

Fic. 5. Error |z, — x| generated by SYMMLQ applied to (46). Notice that every odd iteration
makes no progress, resulting in a convergence plot resembling a step function.

Therefore xng = :c2LkQ_1 Furthermore, since ¢, = ¢, and :ckCG = xéQ + (pmy, for

some w;, L Wy, we have (5, = 0 and xQCkG = ZEQL]CQ The identity :Cng = ka follows
from (Saunders, 1995, Result 11). 0

We illustrate Theorem 2 using a small numerical example. We randomly generate
A and b with m = 50, n = 30, M = I, and N = I and run SYMMLQ directly on
(46). We compute z, via Matlab’s backslash operator, and compute |z, — z,| at each
iteration to produce Figure 5. The resulting convergence plot resembles a staircase
because every odd iteration produces a zero step.

9. Discussion. LNLQ fills a gap in the family of iterative methods for (2) based
on the Golub and Kahan (1965) process. Whereas CRAIG is equivalent to CG applied
directly to (2), LNLQ is equivalent to SYMMLQ, but is numerically more stable
when A is ill-conditioned. The third possibility, MINRES (Paige and Saunders, 1975)
applied to (2), is equivalent to LSQR (Paige and Saunders, 1982a,b) because both
minimize the residual |Az;, — b|, where 2, € K}, is implicitly defined as Ay

As in the companion method LSLQ (Estrin et al., 2017), an appropriate Gauss-
Radau quadrature yields an upper bound on Hy,f — 4, |, and transition to the CRAIG
point provides an upper bound on Hy,? —v,||. However, it is xkc that is updated along
orthogonal directions, and not x£ Thus the upper bound on fo — 2, |, which we
developed for completeness, is deduced from that on ||z — #,|. In our numerical
experiments, both error bounds are remarkably tight, but |zf — z,| may lag behind
|z — x| by several orders of magnitude and is not monotonic. Although the bound
on Hykc — vy, | suggested by Arioli (2013) is tighter than might have been anticipated,
the sliding window strategy allows us to tighten it further at the expense of a few
extra scalar operations per iteration.

All error upper bounds mentioned above depend on an appropriate Gauss-Radau
quadrature, which has been observed to become numerically inaccurate below a certain
error level (Meurant and Tichy, 2014, 2015). This inaccuracy causes the loosening of
the bounds observed in section 7. Should a more stable computation of the Gauss-
Radau quadrature become available, all error upper bounds would improve, including
those from the sliding window approach, which would become tight throughout all
iterations.

USYMLQ), based on the orthogonal tridiagonalization process of Saunders, Simon,

Commit 82ae2b0 by Dominique Orban on 2017-10-27 19:12:49 -0400



64
5

566
567
568

569

YO R W N =

N = = = =3 3
@ N O

0 X8

0 O U R W N

[S S, e} \,’! Ul Ot Ot Ot Ot Ot Ut Ot Ot Ut Ot Ot Ot Ot Ot Ot ot Ot Ot
—_

[Toc| LNLQ 21

TABLE 1
Comparison of CRAIG and LNLQ properties on min Hx\|2 subject to Az = b.

CRAIG LNLQ
[EZN /" (13) and (P, 1974) non-monotonic, < CRAIG (Corollary 1)
|z, — x| \ (11) and (P, 1974) non-monotonic, = CRAIG (Corollary 1)
el ' (22) and (HS, 1952) 7 (22) and (PS, 1975), < CRAIG (EOS, 2016)
lye —wel N\ (22) and (HS, 1952) N\, (22) and (PS, 1975), > CRAIG (EOS, 2016)
|r. — gl  not-monotonic not-monotonic
[l not-monotonic not-monotonic

/" monotonically increasing \\ monotonically decreasing

EOS (Estrin et al., 2016), HS (Hestenes and Stiefel, 1952),
P (Paige, 1974), PS (Paige and Saunders, 1975)

and Yip (1988), coincides with SYMMLQ when applied to consistent symmetric
systems. For (2) it also coincides with LNLQ, but it would be wasteful to apply
USYMLQ directly to (2).

Fong and Saunders (2012, Table 5.1) summarize the monotonicity of various
quantities related to LSQR and LSMR iterations. Table 1 is similar but focuses on
CRAIG and LNLQ.

Acknowledgements. We are grateful to Drew Kouri for the Matlab implementa-
tion of the PDE-constrained optimization problems used in the numerical experiments.
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