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The Problem

Want to solve:

τ∗p = inf
x∈X
{f (x) | c(x) ≤ 0}

with f , c convex

• f (x) is ‘simple’

• c(x) is ‘complicated’

Example (sparse optimization):

min
x
‖x‖1 subject to ‖Ax − b‖22 − σ2 ≤ 0
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Flip it on its head!

τ∗p = inf
x∈X
{f (x) | c(x) ≤ 0}

(
min
x
‖x‖1 s.t. ‖Ax − b‖22 − σ2 ≤ 0

)
⇓

v(τ) = inf
x∈X
{c(x) | f (x) ≤ τ}

(
min
x
‖Ax − b‖22 − σ2 s.t. ‖x‖1 ≤ τ

)
Flipped problem v(τ) is ‘easier’ to solve (for fixed τ)

e.g., using projected gradient descent

Interpretation:

How much do I have to violate the constraints to get a certain

objective value?
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The Level-Set Method

Find τ such that v(τ) = 0.

v(τ) = inf
x∈X
{c(x) | f(x) ≤ τ}

τ

super-optimal
infeasible

sub-optimal
feasible

0
τ
∗
p

Developed by (van den Berg and Friedlander, 2008;

Aravkin, Burke, Drusvyatskiy, Friedlander, Roy, 2016). 4



A weird problem

3× 3 SDP:

min
X�0

−2X31 subject to X11 = 0, X22 + 2X31 = 1; X =

[
X11 · ·
X21 X22 ·
X31 X32 X33

]

Solution X ∗ =

[
0 0 0

0 1 0

0 0 0

]
, optimal value τ∗p = 0.

But v(τ) = infX�0
{
|X11|2 + |X22 + 2X31 − 1|2 | −2X31 ≤ τ

}
looks like

τ

v(τ)

-1
τ
∗
p

0

We get the wrong answer! Why?
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Digging a little deeper...

v(τ) = inf
X�0

{
|X11|2 + |X22 + 2X31 − 1|2 | −2X31 ≤ τ

}
Suppose −1 < τ < 0:

• Let ε > 0, define X (ε) =

[
ε 0 1

2
0 0 0
1
2

0 1
4ε2

]

• Then f (X (ε)) ≤ τ and c(X (ε)) = ε2

• As ε→ 0, c(X (ε))→ 0, but X (0) is not feasible!

Even though v(τ) = 0, there does not exist a feasible point s.t. f (x) ≤ τ !
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Duality

Common description of duality in courses on convex analysis:

1. Lagrangian: L(x , y) = f (x) + c(x)Ty

2. Dual function: g(y) = min
x∈X

L(x , y)

3. Dual problem:

τ∗d = sup
y≥0

g(y)

Weak duality: τ∗d ≤ τ∗p (always holds)

Strong duality: τ∗d = τ∗p (sometimes holds)

For the 3× 3 SDP example:

τ∗d = −1

Coincidence?!
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A geometric view of duality (Veinott 1989)

Figure 4.1.1, Convex Optimization Theory, Bersekas (2009) 8



A geometric view of duality (Veinott 1989)

Perturbed problem:

p(u) = inf
x∈X
{f (x) | c(x) ≤ u},

Let M = epip = {(u, α) | p(u) ≤ α}.

Min Common Point: p(0) = τ∗p

Max Crossing Point: τ∗d

0 u

p(u)

τ
∗
p = τ

∗
d

M = epi p

(a) Strong Duality

0 u

p(u)

τ
∗
d

τ
∗
p

M = epi p

(b) No Strong Duality
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So if strong duality fails...

For τ∗d < τ < τ∗p :

• For any u > 0, p(u) ≤ τ
• Implies that ∃x such that c(x) ≤ u and f (x) ≤ τ
• Thus v(τ) ≤ u for all u > 0 =⇒ v(τ) = 0

0 u

p(u)

τ
∗
d

τ
∗
p

M = epi p
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The Main Result

Theorem

τ > τ∗d =⇒ v(τ) = inf
x∈X
{c(x) | f (x) ≤ τ} = 0

Corollary

If strong duality fails (τ∗d < τ∗p ), the level-set method fails.

Corollary

If f (x) is coercive (f (x)→∞ as ‖x‖ → ∞), or X is compact, then

strong duality holds.
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Conclusion

Open Question:

We know that the level-set method fails without strong duality (as

many methods do), how can we fix this?

Possible idea: proximal-point + level-set method
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