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Example (sparse optimization):

min||x|y subject to ||Ax — b||3 — 02 <0
X



Flip it on its head!
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e.g., using projected gradient descent
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Flipped problem v(7) is ‘easier’ to solve (for fixed 7)

e.g., using projected gradient descent

Interpretation:

How much do | have to violate the constraints to get a certain

objective value?



The Level-Set Method

Find 7 such that v(7) = 0.

5
\
super-optimal sub-optimal
infeasible feasible

Developed by (van den Berg and Friedlander, 2008;
Aravkin, Burke, Drusvyatskiy, Friedlander, Roy, 2016). 4
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A weird problem

3 x 3 SDP:

X11 . .
mira —2X31 subject to X131 =0, Xoo +2X31 =1; X = |:X21 Xn - ]
X33

X X31 Xz

0 0 0
Solution X* = [0 1 0], optimal value 7';‘ = (0.
0 0 0

But v(7) = infxso {|X11|> + |X22 +2X31 — 1|? | —2X31 < 7} looks like

v(7)

We get the wrong answer! Why? 5



Digging a little deeper...

V(T) = )i<n>f0 {|X11|2 -+ |X22 +2X31 — 1‘2 ‘ —2X31 < T}

Suppose —1 < 7 < 0:

N O o
o

~

o ‘»— [SYNT

N

| S

o Let ¢ > 0, define X(e) = [



Digging a little deeper...

V(T) = )i<n>f0 {|X11|2 -+ |X22 +2X31 — 1‘2 ‘ —2X31 < T}

Suppose —1 < 7 < 0:



Digging a little deeper...

V(T) = )i<n>f0 {|X11|2 -+ |X22 +2X31 — 1‘2 ‘ —2X31 < T}

|

e Then 7(X(€)) < 7 and c(X(€)) = €
e As e — 0, c(X(€)) — 0, but X(0) is not feasible!

Suppose —1 < 7 < 0:

‘»— [SYNT
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o Let ¢ > 0, define X(e) = [
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Even though v(7) = 0, there does not exist a feasible point s.t. f(x) < 7!



Common description of duality in courses on convex analysis:

1. Lagrangian: L(x,y) = f(x) 4+ c(x)Ty

2. Dual function: g(y) = min L(x,y)
xeX
3. Dual problem:

7y =supg(y)
y=>0



Common description of duality in courses on convex analysis:

1. Lagrangian: L(x,y) = f(x) 4+ c(x)Ty

2. Dual function: g(y) = mig/ L(x,y)
X€

3. Dual problem:

7y =supg(y)
y=>0

Weak duality: 7; < 7 (always holds)
Strong duality: 7; = 7 (sometimes holds)



Common description of duality in courses on convex analysis:

1. Lagrangian: L(x,y) = f(x) 4+ c(x)Ty

2. Dual function: g(y) = mig/ L(x,y)
X€

3. Dual problem:

7y =supg(y)
y=>0

Weak duality: 7; < 7 (always holds)
Strong duality: 7; = 7 (sometimes holds)

For the 3 x 3 SDP example:

Coincidence?!



A geometric view of duality (Veinott 1989)

w A Min Common
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Figure 4.1.1, Convex Optimization Theory, Bersekas (2009) 8



A geometric view of duality (Veinott 1989)

Perturbed problem:
plu) = inf {F(x) | c(x) < u},

Let M = epip = {(u,a) | p(u) < a}.
Min Common Point: p(0) = 7,

Max Crossing Point: T4



A geometric view of duality (Veinott 1989)

Perturbed problem:
= inf {f <yl
p(u) XIQX{ (x) | e(x) < u},

Let M = epip = {(u,a) | p(u) < a}.
Min Common Point: p(0) = T;

*

Max Crossing Point: T

M = epip M = epip
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(b) No Strong Duality @

(a) Strong Duality



So if strong duality fails...

* *.
For ) <7< (st

e Forany u>0, p(u) <7
e Implies that Ix such that ¢(x) < v and f(x) <7
e Thus v(1)<uforallu>0 = v(7)=0

M = epip

0 \\ U
p(u)

10



The Main Result

Theorem

T>715 = v(1)= Xlgﬁ({c(x) | f(x) <7} =
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The Main Result

Theorem
T>715 = v(1)= inﬁ({c(x) | f(x) <7} =0
x€
Corollary
If strong duality fails (15 < 7,), the level-set method fails.

Corollary

If f(x) is coercive (f(x) — oo as ||x|| = o0), or X" is compact, then
strong duality holds.
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Conclusion

Open Question:
We know that the level-set method fails without strong duality (as

many methods do), how can we fix this?

Possible idea: proximal-point + level-set method
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Thank you for your attention! .



