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Penalty methods for Nonlinear Programming

Equality constrained nonlinear program

min
x

f (x)

s.t. c(x) = 0,

with n variables, m ≤ n constraints and f , c ∈ C 2.

Plethora of methods available, but still an active area of research!

Methods for NLP often complicated:

involve complicated heuristics to trade off optimality vs.
feasibility

feasibility restoration phases required
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Penalty methods

Add some measure of constraint violation in objective

Quadratic penalty

min
x

f (x) +
σk
2
‖c(x)‖2

2

Perturbs the solution.
Need to solve sequence of problems with σk →∞.

`1 penalty
min
x

f (x) + σ‖c(x)‖1

Non-smooth.
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Penalty methods

Add some measure of constraint violation in objective

Augmented Lagrangian method

min
x

f (x) + λTk c(x) +
σk
2
‖c(x)‖2

2

Need to solve sequence of problems.

Would like exact penalty function which is smooth...
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Fletcher’s Penalty Function

Primal only Lagrangian:

L(x , y) = f (x)− yTc(x)

Fletcher’s penalty function:

φσ(x) = f (x)− c(x)Tyσ(x)

yσ(x) = arg min
y

1

2
‖g − Ay‖2

2 + σc(x)Ty

Notation:

g = ∇f (x), A =

∇c(x)

 , Yσ =

∇yσ(x)

 .
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An Illustration

Feasible Set

Iterate Path

(a) ‘hs007’ with feasible set.

Iterate Path

(b) φσ for problem ‘hs007’.
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Derivatives

Gradient of penalty function:

∇φσ(x) = g − Ayσ − Yσc

= gσ − Yσc

Hessian of penalty function:

∇2φσ(x) = H −
m∑
i=1

(yσ)iHi − AY T
σ − YσA

T −∇[Yσ(·)c]

= Hσ − AY T
σ − YσA

T −∇[Yσ(·)c]
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Optimality Conditions

(x∗, y∗) is first-order KKT point:

c(x∗) = 0, g(x∗)− A(x∗)y∗ = 0.

Gradient of penalty function:

∇φσ(x) = g − Ayσ − Yσc .

Then y∗ = yσ(x∗) and ∇φσ(x∗) = 0

=⇒ 1st order KKT points are stationary points of φσ.
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Optimality Conditions

(x∗, y∗) is second-order KKT point:

dT∇2
xxL(x∗, y∗)d ≥ 0, for d such that A(x∗)Td = 0

Hessian of Penalty function:

∇2φσ(x∗) = Hσ − AY T
σ − YσA

T −∇[Yσ(x)c]

= Hσ − HσPA − PAHσ + 2σPA

= P̄AHσP̄A − PAHσPA + 2σPA

Projectors: PA = A(ATA)−1AT , P̄A = I − PA.
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Optimality Conditions

Hessian of Penalty function:

∇2φσ(x∗) = P̄AHσP̄A − PAHσPA + 2σPA

Then ∇2φσ(x∗) � 0 if σ ≥ σ∗ = 1
2
‖PAHσPA‖2

=⇒ 2nd order KKT points are minimizers of φσ for σ ≥ σ∗.
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φσ(x) is a smooth, exact penalty function.

If σ is chosen large enough, it is enough to minimize φσ(x) once to
obtain KKT point to original NLP.

(Weakly-exact: spurious minima rare but still possible)

How to evaluate function/gradient/products with (approx.) Hessian?
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Function Evaluation

Multiplier estimate:

yσ(x) = arg min
y

1

2
‖g − Ay‖2

2 + σc(x)Ty

which is solved by
ATAyσ = ATg − σc

or equivalently, [
I A
AT 0

] [
gσ
yσ

]
=

[
g
σc

]
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Products with Yσ

First, Jacobian of yσ:

Yσ = (Hσ − σI )A(ATA)−1 + S(x , gσ)T (ATA)−1

where

S(x , v)u =

v
TH1u

...
vTHmu

 , S(x , v)Tu =
m∑
i=1

uiHiv

(Notice that S(x∗, gσ) = 0 since gσ = 0 at solution).
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Products with Yσ

Yσu = (Hσ − σI )A(ATA)−1u + S(x , gσ)T (ATA)−1u

= (Hσ − σI )(−w) +
m∑
i=1

viHigσ

where [
I A
AT 0

] [
w
v

]
=

[
0
−u

]
.
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Products with Y T
σ

Y T
σ u = (ATA)−1AT (Hσ − σI )u + (ATA)−1S(x , gσ)u

= v

where [
I A
AT 0

] [
w
v

]
=

[
(Hσ − σI )u
−S(x , gσ)u

]
.
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Gradient Computation

Gradient:
∇φσ = gσ − Yσc

Need to solve one additional augmented system.
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Hessian products

Hessian product:

∇2φσ(x∗)v = Hσv − AY T
σ v − YσA

Tv −∇[Yσ(x)c]v

≈ Hσv − AY T
σ v − YσA

Tv (remove third derivatives)

≈ Hσv − PAHσv − HσPAv + 2σPAv

Can further approximate by removing terms which are zero at
solution.

Two augmented system solves per product.

Fletcher showed that even with these approximations, quadratic
convergence can still be retained.
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“Algorithm”

φσ(x) is smooth and exact.

Can evaluate function, gradient and approximate Hessian products.

Pick your favourite unconstrained minimizer, and done!

The end! Questions?
...Not quite
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Practicalities

A few notes and observations:

Solving augmented system (direct vs. iterative)

Singular Jacobians (regularization)

Trust-region > linesearch (indefinite Hessians)

Adjusting penalty parameter, initial points, unboundedness...
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Solving the Augmented System

Sparse LDL

Semi-normal equations (Q-less QR) + iterative refinement

Iterative methods

Efficient with good preconditioners (I’ve heard these
near-optimal preconditioners for PDE’s are popular...)
Inexact function/gradient evaluation controlled via iterative
solver tolerance
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Solving the Augmented System: LSLQ/LNLQ

Iterative methods for least-squares (LSLQ) or least-norm problems
(LNLQ).

Equivalent to SYMMLQ on normal equations.

Given σest ≥ σmin(A), can monitor ‖w∗ − wk‖ and ‖v∗ − v‖.

For near-optimal preconditioners, where AT =
[
AT
u AT

z

]
and

P = AT
u Au, then σmin

(
P−1ATA

)
≥ 1.

Ron Estrin, Stanford University Fletcher’s Penalty Function 21 / 29



Regularization

If A is singular, the φσ can be undefined.
Regularize least-squares problem:

φσδ(x) = f (x)− c(x)Tyσδ(x)

yσδ(x) = arg min
y

1

2

∥∥∥∥[g0
]
−
[
A
δI

]
y

∥∥∥∥2

2

+ σc(x)Ty

Only change: augmented system becomes[
I A
AT −δ2I

] [
w
v

]
=

[
b1

b2

]
.
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Regularization

Assume that LICQ holds at x∗.

δ > 0 perturbs the solution.

Want δ → 0 to recover exact solution.

Want to retain superlinear/quadratic convergence.

for k=1,2,. . . do
δk ← max

{
δ2
k−1, ‖∇φσδk−1

(xk)‖
}

Get xk+1 from one step on φσδk (xk)
end for

If quadratically convergent method used, entire method above
remains quadratically convergent.
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Inequality Constraints
Consider problem

min
x

f (x)

s.t. c(x) = 0,

x ≥ 0.

Modify Fletcher’s penalty function to

min
x

φσ(x) = f (x)− c(x)Tyσ(x)

s.t. x ≥ 0

yσ(x) = arg min
y

1

2
‖g − Ay‖2

X + σc(x)Ty

Smoothness holds for x > 0 (use interior method)

Exactness still holds
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Inverse Poisson Problem (Thanks Drew!)

min
u,z

1

2

∫
Ω

(u(x)− ū(x))2dx +
α

2

∫
Ω

z(x)2dx

s.t −∇ · (z∇u) = f , in Ω

u = 0, on ∂Ω

Discretize using finite elements (interlab), run with Matlab
implementation of penalty method with:

n = 2050, m = 961

α = 10−4, σ = 10−2

TRON (Newton-CG) applied on φσ(u, z)

LNLQ for augmented system solves, rel. error tol = 10−3
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Inverse Poisson Problem
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Inverse Poisson Problem

Iterations # Hv # Jprod # Adj. Jprod
ε = 10−2 22 878 3448 3672
ε = 10−4 21 896 4251 4459
ε = 10−6 20 744 4651 4928
ε = 10−8 20 746 5611 5887
ε = 10−10 20 746 6595 6871
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ROL example PDE-OPT navier-stokes example 01
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Conclusions and Future Work

Simpler approach to nonlinear programming!

Initial version implemented into ROL in only couple days!

Shows promise when augmented systems efficiently solvable (e.g.
PDE-constrained optimization)

Current implementation Matlab, ROL implementation coming
along

Many practical matters to be resolved:

Practical tolerance rules for inexact solves

Good heuristics for updating penalty parameter

Stability of inequality constrained problems near boundary

Continue implementation in Matlab and ROL

Test on more PDE-constrained optimization problems!
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