A Smooth Exact Penalty Function for Nonlinear Optimization

Ron Estrin ICME, Stanford University

> Sandia National Lab Feb. 21, 2018

Joint Work with Michael Friedlander, Dominique Orban, and Michael Saunders

Penalty methods for Nonlinear Programming

Equality constrained nonlinear program

$$\min_{x} f(x)$$

s.t. $c(x) = 0$,

with *n* variables, $m \le n$ constraints and $f, c \in C^2$.

Plethora of methods available, but still an active area of research!

Methods for NLP often complicated:

- involve complicated heuristics to trade off optimality vs. feasibility
- feasibility restoration phases required

Add some measure of constraint violation in objective

• Quadratic penalty

$$\min_{x} f(x) + \frac{\sigma_k}{2} \|c(x)\|_2^2$$

- Perturbs the solution.
- Need to solve sequence of problems with $\sigma_k \to \infty$.

Add some measure of constraint violation in objective

Quadratic penalty

$$\min_{x} f(x) + \frac{\sigma_k}{2} \|c(x)\|_2^2$$

- Perturbs the solution.
- Need to solve sequence of problems with $\sigma_k \to \infty$.
- ℓ_1 penalty

$$\min_{x} f(x) + \sigma \|c(x)\|_1$$

• Non-smooth.

Add some measure of constraint violation in objective

• Augmented Lagrangian method

$$\min_{x} f(x) + \lambda_k^T c(x) + \frac{\sigma_k}{2} \|c(x)\|_2^2$$

• Need to solve sequence of problems.

Add some measure of constraint violation in objective

• Augmented Lagrangian method

$$\min_{x} f(x) + \lambda_k^T c(x) + \frac{\sigma_k}{2} \|c(x)\|_2^2$$

- Need to solve sequence of problems.
- Would like exact penalty function which is smooth...

Fletcher's Penalty Function

Primal only Lagrangian:

$$L(x,y) = f(x) - y^T c(x)$$

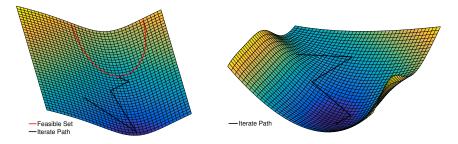
Fletcher's penalty function:

$$\phi_{\sigma}(x) = f(x) - c(x)^{T} y_{\sigma}(x)$$
$$y_{\sigma}(x) = \arg\min_{y} \frac{1}{2} ||g - Ay||_{2}^{2} + \sigma c(x)^{T} y$$

Notation:

$$g = \nabla f(x), \qquad A = \left[\nabla c(x) \right], \qquad Y_{\sigma} = \left[\nabla y_{\sigma}(x) \right].$$

An Illustration



(a) 'hs007' with feasible set.

(b) ϕ_{σ} for problem 'hs007'.

Derivatives

Gradient of penalty function:

$$abla \phi_{\sigma}(x) = g - A y_{\sigma} - Y_{\sigma} c
onumber \ = g_{\sigma} - Y_{\sigma} c$$

Hessian of penalty function:

$$\nabla^2 \phi_{\sigma}(x) = H - \sum_{i=1}^m (y_{\sigma})_i H_i - A Y_{\sigma}^T - Y_{\sigma} A^T - \nabla [Y_{\sigma}(\cdot)c]$$
$$= H_{\sigma} - A Y_{\sigma}^T - Y_{\sigma} A^T - \nabla [Y_{\sigma}(\cdot)c]$$

 (x_*, y_*) is first-order KKT point:

$$c(x_*) = 0, \qquad g(x_*) - A(x_*)y_* = 0.$$

 (x_*, y_*) is first-order KKT point:

$$c(x_*) = 0, \qquad g(x_*) - A(x_*)y_* = 0.$$

Gradient of penalty function:

$$\nabla \phi_{\sigma}(x) = g - A y_{\sigma} - Y_{\sigma} c.$$

Then $y_* = y_\sigma(x_*)$ and $\nabla \phi_\sigma(x_*) = 0$

 \implies 1st order KKT points are stationary points of ϕ_{σ} .

 (x_*, y_*) is second-order KKT point:

 $d^T \nabla^2_{xx} L(x_*, y_*) d \ge 0,$ for d such that $A(x_*)^T d = 0$

$$(x_*, y_*)$$
 is second-order KKT point:
 $d^T \nabla^2_{xx} L(x_*, y_*) d \ge 0,$ for d such that $A(x_*)^T d = 0$

Hessian of Penalty function:

$$\nabla^{2}\phi_{\sigma}(x_{*}) = H_{\sigma} - AY_{\sigma}^{T} - Y_{\sigma}A^{T} - \nabla[Y_{\sigma}(x)c]$$
$$= H_{\sigma} - H_{\sigma}P_{A} - P_{A}H_{\sigma} + 2\sigma P_{A}$$
$$= \bar{P}_{A}H_{\sigma}\bar{P}_{A} - P_{A}H_{\sigma}P_{A} + 2\sigma P_{A}$$

Projectors:
$$P_A = A(A^T A)^{-1}A^T$$
, $\bar{P}_A = I - P_A$.

Hessian of Penalty function:

$$abla^2 \phi_\sigma(x_*) = ar{P}_A H_\sigma ar{P}_A - P_A H_\sigma P_A + 2\sigma P_A$$

Then
$$\nabla^2 \phi_{\sigma}(x_*) \succeq 0$$
 if $\sigma \ge \sigma_* = \frac{1}{2} \| P_A H_{\sigma} P_A \|_2$

 \implies 2nd order KKT points are minimizers of ϕ_{σ} for $\sigma \geq \sigma_*$.

 $\phi_{\sigma}(x)$ is a smooth, exact penalty function.

If σ is chosen large enough, it is enough to minimize $\phi_{\sigma}(x)$ once to obtain KKT point to original NLP.

• (Weakly-exact: spurious minima rare but still possible)

How to evaluate function/gradient/products with (approx.) Hessian?

Function Evaluation

Multiplier estimate:

$$y_{\sigma}(x) = rgmin_{y} rac{1}{2} \|g - Ay\|_{2}^{2} + \sigma c(x)^{T} y$$

which is solved by

$$A^T A y_\sigma = A^T g - \sigma c$$

or equivalently,

$$\begin{bmatrix} I & A \\ A^{T} & 0 \end{bmatrix} \begin{bmatrix} g_{\sigma} \\ y_{\sigma} \end{bmatrix} = \begin{bmatrix} g \\ \sigma c \end{bmatrix}$$

Products with Y_{σ}

First, Jacobian of y_{σ} :

$$Y_{\sigma} = (H_{\sigma} - \sigma I)A(A^{T}A)^{-1} + S(x, g_{\sigma})^{T}(A^{T}A)^{-1}$$

where

$$S(x,v)u = \begin{bmatrix} v^T H_1 u \\ \vdots \\ v^T H_m u \end{bmatrix}, \qquad S(x,v)^T u = \sum_{i=1}^m u_i H_i v$$

(Notice that $S(x_*, g_{\sigma}) = 0$ since $g_{\sigma} = 0$ at solution).

Products with Y_{σ}

$$Y_{\sigma}u = (H_{\sigma} - \sigma I)A(A^{T}A)^{-1}u + S(x, g_{\sigma})^{T}(A^{T}A)^{-1}u$$
$$= (H_{\sigma} - \sigma I)(-w) + \sum_{i=1}^{m} v_{i}H_{i}g_{\sigma}$$

where

$$\begin{bmatrix} I & A \\ A^T & 0 \end{bmatrix} \begin{bmatrix} w \\ v \end{bmatrix} = \begin{bmatrix} 0 \\ -u \end{bmatrix}.$$

Products with Y_{σ}^{T}

$$Y_{\sigma}^{\mathsf{T}} u = (A^{\mathsf{T}} A)^{-1} A^{\mathsf{T}} (H_{\sigma} - \sigma I) u + (A^{\mathsf{T}} A)^{-1} S(x, g_{\sigma}) u$$

= v

where

$$\begin{bmatrix} I & A \\ A^T & 0 \end{bmatrix} \begin{bmatrix} w \\ v \end{bmatrix} = \begin{bmatrix} (H_{\sigma} - \sigma I)u \\ -S(x, g_{\sigma})u \end{bmatrix}.$$

Gradient Computation

Gradient:

$$\nabla \phi_{\sigma} = \mathbf{g}_{\sigma} - \mathbf{Y}_{\sigma} \mathbf{c}$$

Need to solve one additional augmented system.

Hessian products

Hessian product:

$$\nabla^{2}\phi_{\sigma}(x_{*})v = H_{\sigma}v - AY_{\sigma}^{T}v - Y_{\sigma}A^{T}v - \nabla[Y_{\sigma}(x)c]v$$

$$\approx H_{\sigma}v - AY_{\sigma}^{T}v - Y_{\sigma}A^{T}v \qquad \text{(remove third derivatives)}$$

$$\approx H_{\sigma}v - P_{A}H_{\sigma}v - H_{\sigma}P_{A}v + 2\sigma P_{A}v$$

Can further approximate by removing terms which are zero at solution.

Two augmented system solves per product.

Hessian products

Hessian product:

$$\nabla^2 \phi_{\sigma}(x_*) v = H_{\sigma} v - A Y_{\sigma}^{T} v - Y_{\sigma} A^{T} v - \nabla [Y_{\sigma}(x)c] v$$

$$\approx H_{\sigma} v - A Y_{\sigma}^{T} v - Y_{\sigma} A^{T} v \qquad \text{(remove third derivatives)}$$

$$\approx H_{\sigma} v - P_{A} H_{\sigma} v - H_{\sigma} P_{A} v + 2\sigma P_{A} v$$

Can further approximate by removing terms which are zero at solution.

Two augmented system solves per product.

Fletcher showed that even with these approximations, **quadratic convergence** can still be retained.

 $\phi_{\sigma}(x)$ is smooth and exact.

 $\phi_{\sigma}(x)$ is smooth and exact.

Can evaluate function, gradient and approximate Hessian products.

 $\phi_{\sigma}(x)$ is smooth and exact.

Can evaluate function, gradient and approximate Hessian products.

Pick your favourite unconstrained minimizer, and done!

 $\phi_{\sigma}(x)$ is smooth and exact.

Can evaluate function, gradient and approximate Hessian products.

Pick your favourite unconstrained minimizer, and done!

The end! Questions?

 $\phi_{\sigma}(x)$ is smooth and exact.

Can evaluate function, gradient and approximate Hessian products.

Pick your favourite unconstrained minimizer, and done!

The end! Questions? ...Not quite

A few notes and observations:

A few notes and observations:

• Solving augmented system (direct vs. iterative)

- A few notes and observations:
 - Solving augmented system (direct vs. iterative)
 - Singular Jacobians (regularization)

- A few notes and observations:
 - Solving augmented system (direct vs. iterative)
 - Singular Jacobians (regularization)
 - Trust-region > linesearch (indefinite Hessians)

- A few notes and observations:
 - Solving augmented system (direct vs. iterative)
 - Singular Jacobians (regularization)
 - Trust-region > linesearch (indefinite Hessians)
 - Adjusting penalty parameter, initial points, unboundedness...

Solving the Augmented System

• Sparse LDL

- Semi-normal equations (Q-less QR) + iterative refinement
- Iterative methods
 - Efficient with good preconditioners (I've heard these near-optimal preconditioners for PDE's are popular...)
 - Inexact function/gradient evaluation controlled via iterative solver tolerance

Solving the Augmented System: LSLQ/LNLQ

Iterative methods for least-squares (LSLQ) or least-norm problems (LNLQ).

- Equivalent to SYMMLQ on normal equations.
- Given $\sigma_{est} \ge \sigma_{\min}(A)$, can monitor $||w_* w_k||$ and $||v_* v||$.
- For near-optimal preconditioners, where $A^T = \begin{bmatrix} A_u^T & A_z^T \end{bmatrix}$ and $\mathcal{P} = A_u^T A_u$, then $\sigma_{\min} \left(\mathcal{P}^{-1} A^T A \right) \ge 1$.

Regularization

If A is singular, the ϕ_{σ} can be undefined. Regularize least-squares problem:

$$\phi_{\sigma\delta}(x) = f(x) - c(x)^{T} y_{\sigma\delta}(x)$$
$$y_{\sigma\delta}(x) = \arg\min_{y} \frac{1}{2} \left\| \begin{bmatrix} g \\ 0 \end{bmatrix} - \begin{bmatrix} A \\ \delta I \end{bmatrix} y \right\|_{2}^{2} + \sigma c(x)^{T} y$$

Only change: augmented system becomes

$$\begin{bmatrix} I & A \\ A^T & -\delta^2 I \end{bmatrix} \begin{bmatrix} w \\ v \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

Regularization

Assume that LICQ holds at x_* .

• $\delta > 0$ perturbs the solution.

Regularization

Assume that LICQ holds at x_* .

- $\delta > 0$ perturbs the solution.
- Want $\delta \rightarrow 0$ to recover exact solution.

Regularization

Assume that LICQ holds at x_* .

- $\delta > 0$ perturbs the solution.
- Want $\delta \rightarrow 0$ to recover exact solution.
- Want to retain superlinear/quadratic convergence.

Regularization

Assume that LICQ holds at x_* .

- $\delta > 0$ perturbs the solution.
- Want $\delta \rightarrow 0$ to recover exact solution.
- Want to retain superlinear/quadratic convergence.

for k=1,2,... do

$$\delta_k \leftarrow \max \left\{ \delta_{k-1}^2, \| \nabla \phi_{\sigma \delta_{k-1}}(x_k) \| \right\}$$

Get x_{k+1} from one step on $\phi_{\sigma \delta_k}(x_k)$
end for

If quadratically convergent method used, entire method above remains quadratically convergent.

Inequality Constraints

Consider problem

$$\min_{x} \quad f(x) \\ \text{s.t.} \quad c(x) = 0, \\ x \ge 0.$$

Inequality Constraints

Consider problem

$$egin{array}{lll} \min_{x} & f(x) \ {
m s.t.} & c(x) = 0, \ & x \geq 0. \end{array}$$

Modify Fletcher's penalty function to

$$\begin{split} \min_{x} & \phi_{\sigma}(x) = f(x) - c(x)^{T} y_{\sigma}(x) \\ \text{s.t.} & x \ge 0 \\ & y_{\sigma}(x) = \arg\min_{y} \frac{1}{2} \|g - Ay\|_{\mathbf{X}}^{2} + \sigma c(x)^{T} y \end{split}$$

Inequality Constraints

Consider problem

$$egin{array}{lll} \min_{x} & f(x) \ {
m s.t.} & c(x) = 0, \ & x \geq 0. \end{array}$$

Modify Fletcher's penalty function to

$$\begin{split} \min_{x} & \phi_{\sigma}(x) = f(x) - c(x)^{T} y_{\sigma}(x) \\ \text{s.t.} & x \ge 0 \\ & y_{\sigma}(x) = \arg\min_{y} \frac{1}{2} \|g - Ay\|_{X}^{2} + \sigma c(x)^{T} y \end{split}$$

- Smoothness holds for x > 0 (use interior method)
- Exactness still holds

Ron Estrin, Stanford University

Inverse Poisson Problem (Thanks Drew!)

$$\min_{u,z} \qquad \frac{1}{2} \int_{\Omega} (u(x) - \bar{u}(x))^2 dx + \frac{\alpha}{2} \int_{\Omega} z(x)^2 dx$$

s.t
$$-\nabla \cdot (z\nabla u) = f, \quad \text{in } \Omega$$
$$u = 0, \quad \text{on } \partial\Omega$$

Discretize using finite elements (interlab), run with Matlab implementation of penalty method with:

- n = 2050, m = 961
- $\alpha = 10^{-4}$, $\sigma = 10^{-2}$
- TRON (Newton-CG) applied on $\phi_{\sigma}(u,z)$
- LNLQ for augmented system solves, rel. error tol = 10^{-3}

Inverse Poisson Problem

iter 0	merit 2.997845e+00	objective 1.837255e+00	opt Error 7.985e-03	du Feas 7.123e-03	nln Feas 2.000e+00	CGits	stat
1	2.964378e+00	1.820891e+00	7.976e-03	7.087e-03	1.975e+00	1	
2	2.834288e+00	1.755744e+00	7.934e-03	6.938e-03	1.878e+00	1	
3	2.372450e+00	1.498781e+00	7.645e-03	6.225e-03	1.492e+00	ī	
4	1.111925e+00	6.183138e-01	6.570e-03	7.431e-03	1.025e+00	1	
5		3.408713e-02	3.827e-03	2.515e-03	4.348e-01	2	
6	4.033638e-01	1.108718e-01	4.538e-03	3.096e-03	1.180e+00	2	rej
7	6.599361e-02	1.687954e-02	2.433e-03	2.230e-03	2.004e-01	2	,
8	3.608916e-03	9.273160e-04	7.735e-04	4.657e-04	7.073e-02	2	
9	2.334628e-04	2.316148e-04	3.226e-05	1.783e-05	6.444e-03	1	
10	2.306002e-04	2.305667e-04	1.013e-06	8.145e-07	2.053e-04	1	
11	2.081017e-04	1.997098e-04	3.682e-05	2.142e-05	3.505e-03	6	
12	2.052722e-04	2.054533e-04	1.543e-06	8.706e-07	3.129e-04	1	
13	1.905605e-04	1.874832e-04	2.050e-05	1.217e-05	8.842e-04	10	
14	1.898997e-04	1.899435e-04	5.290e-07	3.753e-07	7.993e-05	1	
15	1.854960e-04	1.842241e-04	1.369e-05	8.012e-06	6.028e-04	16	
16	1.853261e-04	1.853453e-04	6.334e-07	3.400e-07	4.926e-05	1	
17	1.848716e-04	1.847335e-04	2.251e-06	1.229e-06	1.597e-04	24	
18	1.848673e-04	1.848701e-04	1.755e-07	9.599e-08	1.207e-05	1	
19	1.848203e-04	1.848129e-04	1.052e-07	5.783e-08	6.837e-06	32	
20	1.848202e-04	1.848205e-04	6.376e-09	3.621e-09	4.582e-07	1	

Inverse Poisson Problem

	Iterations		# Jprod	# Adj. Jprod
$\epsilon = 10^{-2}$	22	878	3448	3672
$\epsilon = 10^{-4}$	21	896	4251	4459
$\epsilon = 10^{-6}$	20	744	4651	4928
$\epsilon = 10^{-8}$	20	746	5611	5887
$\epsilon = 10^{-10}$	20	746	6595	6871

ROL_example_PDE-OPT_navier-stokes_example_01

Fletcher solver : Trust_Region								
iter	merit	fval	gpnorm	gLnorm	cnorm	snorm	flag	iterCG
0	3.1e-01	3.1e-01	4.1e-02	4.1e-02	4.6e-12			
1	3.1e-01	3.0e-01	4.1e-02	8.9e+00	2.5e-04	6.8e-01	2	48
2	3.1e-01	3.0e-01	4.1e-02	4.1e-02	4.6e-12	1.7e-01	0	2
3	3.1e-01	3.1e-01	9.2e-02	6.1e-02	1.4e-06	4.3e-02	0	1
4	3.0e-01	3.0e-01	5.3e-01	2.8e-01	8.6e-04	1.0e-01	0	4
5	3.0e-01	3.0e-01	4.4e-01	2.2e-01	5.1e-05	1.0e-01	0	7
6	3.0e-01	3.0e-01	9.8e-01	4.9e-01	1.2e-05	1.6e-01	0	42
7	3.0e-01	3.0e-01	1.1e-01	5.8e-02	4.1e-06	6.0e-02	0	31
8	3.0e-01	2.9e-01	4.2e-01	2.1e-01	5.1e-06	1.1e-01	0	39
9	2.9e-01	2.9e-01	8.2e-03	4.2e-03	7.3e-07	1.7e-02	0	25
10	2.9e-01	2.9e-01	6.6e-03	3.3e-03	8.2e-08	1.4e-02	0	27
11	2.9e-01	2.9e-01	5.3e-05	4.9e-05	5.2e-08	1.0e-04	0	7
12	2.9e-01	2.9e-01	1.7e-06	8.9e-07	1.9e-10	2.4e-04	0	44

Conclusions and Future Work

Simpler approach to nonlinear programming!

- Initial version implemented into ROL in only couple days!
- Shows promise when augmented systems efficiently solvable (e.g. PDE-constrained optimization)
- Current implementation Matlab, ROL implementation coming along

Conclusions and Future Work

Simpler approach to nonlinear programming!

- Initial version implemented into ROL in only couple days!
- Shows promise when augmented systems efficiently solvable (e.g. PDE-constrained optimization)
- Current implementation Matlab, ROL implementation coming along

Many practical matters to be resolved:

- Practical tolerance rules for inexact solves
- Good heuristics for updating penalty parameter
- Stability of inequality constrained problems near boundary
- Continue implementation in Matlab and ROL
- Test on more PDE-constrained optimization problems!