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Constrained Optimization

Equality-constrained nonlinear program:

minimize
x∈Rn

f (x) subject to c(x) = 0,

with n variables, m ≤ n constraints, and f , c ∈ C3.

Focus on equality constraints only for now, discuss inequality/bound
constraints later.
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Such problems are ubiquitous in the computational sciences for
applications including:

Structural Design

Systems biology

Machine learning

Optimal control

Robotics planning

...
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Example: PDE-Constrained Optimal Control
Inverse Poisson Problem:

min
u,z

1

2

∫
Ω

(u(x)− ū(x))2dx +
α

2

∫
Ω

z(x)2dx

s.t −∇ · (z∇u) = f , in Ω

u = 0, on ∂Ω,

where Ω = [0, 1]2, ū is observed data, and f is given source.

u is the state (e.g., temperature)

z is the control (e.g., heat conduction coefficient)

Problem structure:

Want computed state to match observations

Want control variable to be “reasonable” (regularization)

State must be physically meaningful given control

Ron Estrin, Stanford University Fletcher’s Penalty Function 4 / 38



Example: PDE-Constrained Optimal Control
Inverse Poisson Problem:

min
u,z

1

2

∫
Ω
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Solving Constrained Optimization Problems

Necessary conditions for optimal primal-dual solution (x∗, y ∗):

c(x∗) = 0,

g(x∗) = A(x∗)y ∗.

Equivalently, L(x , y) = f (x)− yTc(x) and

∇L(x∗, y ∗) = 0.

Constrained solvers built around root-finding of above equations.

Notation:

g := ∇f (x), A :=

∇c(x)

 .
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Solving Constrained Optimization Problems

Plethora of methods available, but still an active area of research!

Common difficulties with constrained methods:

Finding a feasible point is just as difficult as solving problem

Complicated heuristics to trade off optimality vs. feasibility

Require feasibility restoration phases

Most solvers built using explicit matrix-factorizations

Alternative approach:

Move constraint violation into the objective

Solve unconstrained problem

Additionally: want to avoid matrix-factorizations
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Penalty methods for Nonlinear Programming

Add some measure of constraint violation in objective

Quadratic penalty

min
x

f (x) +
σk
2
‖c(x)‖2

2

Perturbs the solution.
Need to solve sequence of problems with σk →∞.

`1-penalty
min
x

f (x) + σ‖c(x)‖1

Non-smooth.
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Penalty methods

Add some measure of constraint violation in objective

Augmented Lagrangian method

min
x

f (x)− yT
k c(x) +

σk
2
‖c(x)‖2

2

Need to solve sequence of problems.

Would like exact penalty function which is smooth...
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Fletcher’s Penalty Function

Primal only Lagrangian:

L(x , y) := f (x)− yTc(x)

Fletcher’s penalty function:

φσ(x) := f (x)− c(x)Tyσ(x)

yσ(x) := arg min
y

1
2
‖g − Ay‖2

2 + σc(x)Ty

Notation:

g := ∇f (x), A :=

∇c(x)

 , Yσ :=

∇yσ(x)

 .
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Variations

Smooth Primal (Fletcher, 1970)

φ0,ρ(x) := f (x)− y(x)Tc(x) + 1
2
ρ‖c(x)‖2

2

Smooth Primal-Dual
(Di Pillo and Grippo, 1989; Zavala and Anitescu, 2014)

ψα,β(x , y) := L(x , y) + 1
2
α‖c(x)‖2

2 + 1
2
β‖∇L(x , y)‖2

2
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An Illustration

Feasible Set

Iterate Path

(a) ‘hs007’ with feasible set.

Iterate Path

(b) φσ for problem ‘hs007’.
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Derivatives

More notation (sorry!):

gσ(x) = ∇xL(x , yσ), Hσ(x) = ∇xxL(x , yσ)

Gradient of penalty function:

∇φσ(x) = gσ − Yσc

Hessian of penalty function:

∇2φσ(x) = H −
m∑
i=1

(yσ)iHi − AY T
σ − YσA

T −∇[Yσ(·)c]

= Hσ − AY T
σ − YσA

T −∇[Yσ(·)c]
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First-Order Optimality Conditions

(x∗, y∗) is first-order KKT point:

c(x∗) = 0, g(x∗)− A(x∗)y∗ = 0.

Gradient of penalty function:

∇φσ(x) = g − Ayσ − Yσc .

Then y∗ = yσ(x∗) and ∇φσ(x∗) = 0

=⇒ 1st order KKT points are stationary points of φσ.
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Second-Order Optimality Conditions

(x∗, y∗) is second-order KKT point:

dT∇2
xxL(x∗, y∗)d ≥ 0, for d such that A(x∗)

Td = 0

Hessian of Penalty function:

∇2φσ(x∗) = Hσ − AY T
σ − YσA

T −∇[Yσ(·)c]

= Hσ − HσPA − PAHσ + 2σPA

= P̄AHσP̄A − PAHσPA + 2σPA

Projectors: PA = A(ATA)−1AT , P̄A = I − PA.
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Second-Order Optimality Conditions

Hessian of Penalty function:

∇2φσ(x∗) = P̄AHσP̄A − PAHσPA + 2σPA

Then ∇2φσ(x∗) � 0 ⇐⇒ σ ≥ σ∗ = 1
2
λmax(PAHσPA)

=⇒ 2nd order KKT points are minimizers of φσ for σ ≥ σ∗.
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Solving NLP with φσ

φσ(x) is a smooth, exact penalty function.

If σ is chosen large enough, it is enough to minimize φσ(x) once to
obtain KKT point to original NLP.

(Weakly-exact: spurious minima rare but still possible)

Can use φσ,ρ = φσ(x) + 1
2ρ‖c(x)‖2

2 to resolve this
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Benefits of this approach

Conceptually simple minimization (no optimality/feasibility
trade-off heuristics)

No feasibility restoration∗

No Maratos effect (slow convergence for nonsmooth penalties)

Solve single unconstrained problem if σ known in advance

Naturally accommodates matrix-free optimization (only
matrix-vector products; no factorizations)

Naturally accommodates inexact optimization
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The technical part

In order to minimize φσ, need procedures for:

function evaluation, φσ(x),

gradient evaluation, ∇φσ(x), and

approximate Hessian-vector products: compute for any v ∈ Rn

u = B(x)v , B(x) ≈ ∇2φσ(x)

Therefore need procedures for computing:

yσ

products with Yσ and Y T
σ
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Function Evaluation

Multiplier estimate:

yσ(x) = arg min
y

1

2
‖g − Ay‖2

2 + σc(x)Ty

which is solved by
ATAyσ = ATg − σc

or equivalently, [
I A
AT 0

] [
gσ
yσ

]
=

[
g
σc

]
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Products with Yσ

First, Jacobian of yσ:

Yσ = (Hσ − σI )A(ATA)−1 + S(x , gσ)T (ATA)−1

where

S(x , v)u =

v
TH1u

...
vTHmu

 , S(x , v)Tu =
m∑
i=1

uiHiv

(Notice that S(x∗, gσ) = 0 since gσ = 0 at solution).
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Products with Yσ

Yσu = (Hσ − σI )A(ATA)−1u + S(x , gσ)T (ATA)−1u

= (Hσ − σI )(−w) +
m∑
i=1

viHigσ

where [
I A
AT 0

] [
w
v

]
=

[
0
−u

]
.
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Products with Y T
σ

Y T
σ u = (ATA)−1AT (Hσ − σI )u + (ATA)−1S(x , gσ)u

= v

where [
I A
AT 0

] [
w
v

]
=

[
(Hσ − σI )u
−S(x , gσ)u

]
.
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Gradient Computation

Gradient:
∇φσ = gσ − Yσc

Need to solve one additional augmented system.
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Hessian products

Hessian product:

∇2φσ(x)v = Hσv − AY T
σ v − YσA

Tv −∇[Yσ(·)c]v

≈ Hσv − AY T
σ v − YσA

Tv (remove third derivatives)

≈ Hσv − PAHσv − HσPAv + 2σPAv

Can further approximate by removing terms which are zero at
solution.

Two augmented system solves per product.

Fletcher showed that even with these approximations,
superlinear/quadratic convergence can still be retained.
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“Algorithm”

φσ(x) is smooth and exact.

Can evaluate function, gradient and approximate Hessian products.

Pick your favourite unconstrained minimizer, and done!

The end! Questions?
...Not quite
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Practicalities

A few notes and observations:

Trust-region > linesearch (indefinite Hessians)

Solving augmented system (direct vs. iterative)

Handling linear constraints

Singular Jacobians (regularization)

Adjusting penalty parameter, initial points, unboundedness...
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Solving the Augmented System

Direct Solvers

Factorize augmented system once per iteration
Sparse LDL
Semi-normal equations (Q-less QR) + iterative refinement

Iterative methods

Results in matrix-free implementation
Inexact function/gradient evaluation controlled via iterative
solver tolerance
Efficient with good preconditioners
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Solving the Augmented System: LSLQ/LNLQ

Iterative methods for least-squares (LSLQ) or least-norm problems
(LNLQ).

Equivalent to SYMMLQ on normal equations

Given σest ≤ σmin(A), can monitor ‖w∗ − wk‖ and ‖v∗ − v‖

For near-optimal preconditioners, where AT =
[
AT
u AT

z

]
and

P = AT
u Au, then σmin

(
P−1ATA

)
≥ 1
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Inexact Evaluation

Certain trust-region methods (Conn, Gould and Toint 2000;
Heinkenschloss and Ridzal, 2014) converge provided that

‖φσ − φ̃σ‖ ≤ Mη1,

‖∇φσ − ∇̃φσ‖ ≤ Mη2,

where ηi is a prescribed accuracy, and M > 0 is a fixed constant
(need not be known).

Can bound terms according to residual or error of augmented system.

Error expressions tedious—in practice, use ad-hoc fixed error bound.
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Handling Linear Constraints

Suppose some constraints are linear:

minimize
x∈Rn

f (x) subject to c(x) = 0, BTx = d ,

Change penalty function minimization to:

min
x

φσ(x) := f (x)− c(x)Tyσ(x)

s.t. BTx = d

Benefits:

Threshold value σ∗ decreases

Penalty function better conditioned
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Regularization

If A = ∇c is rank-deficient, then φσ can be undefined.

Regularize least-squares problem:

φσ(x ; δ) = f (x)− c(x)Tyσ(x ; δ)

yσ(x ; δ) = arg min
y

1

2

∥∥∥∥[g0
]
−
[
A
δI

]
y

∥∥∥∥2

2

+ σc(x)Ty

Only change: augmented system becomes[
I A
AT −δ2I

] [
w
v

]
=

[
b1

b2

]
.
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Regularization

Assume that A(x∗) has full-rank at x∗ (LICQ).

δ > 0 perturbs the solution.

Want δ → 0 to recover exact solution.

Want to retain superlinear/quadratic convergence.

for k=1,2,. . . do
δk ← max

{
min{δk−1, ‖∇φσ(xk ; δk−1)‖}, δ2

k−1

}
Get xk+1 from one step on φσ(xk ; δk)

end for

If quadratically convergent method used, entire method above
remains quadratically convergent.

Ron Estrin, Stanford University Fletcher’s Penalty Function 32 / 38



Regularization

Assume that A(x∗) has full-rank at x∗ (LICQ).

δ > 0 perturbs the solution.

Want δ → 0 to recover exact solution.

Want to retain superlinear/quadratic convergence.

for k=1,2,. . . do
δk ← max

{
min{δk−1, ‖∇φσ(xk ; δk−1)‖}, δ2

k−1

}
Get xk+1 from one step on φσ(xk ; δk)

end for

If quadratically convergent method used, entire method above
remains quadratically convergent.

Ron Estrin, Stanford University Fletcher’s Penalty Function 32 / 38



Regularization

Assume that A(x∗) has full-rank at x∗ (LICQ).

δ > 0 perturbs the solution.

Want δ → 0 to recover exact solution.

Want to retain superlinear/quadratic convergence.

for k=1,2,. . . do
δk ← max

{
min{δk−1, ‖∇φσ(xk ; δk−1)‖}, δ2

k−1

}
Get xk+1 from one step on φσ(xk ; δk)

end for

If quadratically convergent method used, entire method above
remains quadratically convergent.

Ron Estrin, Stanford University Fletcher’s Penalty Function 32 / 38



Regularization

Assume that A(x∗) has full-rank at x∗ (LICQ).

δ > 0 perturbs the solution.

Want δ → 0 to recover exact solution.

Want to retain superlinear/quadratic convergence.

for k=1,2,. . . do
δk ← max

{
min{δk−1, ‖∇φσ(xk ; δk−1)‖}, δ2

k−1

}
Get xk+1 from one step on φσ(xk ; δk)

end for

If quadratically convergent method used, entire method above
remains quadratically convergent.

Ron Estrin, Stanford University Fletcher’s Penalty Function 32 / 38



Inequality Constraints

Consider problem

min
x

f (x)

s.t. c(x) = 0,

x ≥ 0.

Modify Fletcher’s penalty function to

min
x

φσ(x) := f (x)− c(x)Tyσ(x)

s.t. x ≥ 0

yσ(x) := arg min
y

1

2
‖g − Ay‖2

X + σc(x)Ty
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Inequality Constraints

Minimize smooth function over bound constraints

Smoothness holds for x > 0 (use interior method)

Exactness still holds

Need to now solve augmented system:[
I X

1
2A

ATX
1
2 0

] [
w
v

]
=

[
b1

b2

]
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Numerical Experiments: Inverse Poisson Problem

Solve inverse-poisson problem from earlier.

Discretize using finite elements, n = 2050, m = 961, α = 10−4.

Use Matlab implementation of Newton-CG trust-region solver
(TRON). Solve linear system with error accuracy η:

η Iter. #Hv #Av #ATv
10−2 29 874 1794 2608
10−4 27 830 1950 2728
10−6 27 866 2317 3129
10−8 27 866 2673 3485
10−10 27 866 3145 3957

Thanks to Drew Kouri (Sandia) for implementing the model!

Ron Estrin, Stanford University Fletcher’s Penalty Function 35 / 38



Numerical Experiments: Linear Constraints

Problem n mlin mnln σ∗
impl σ∗

expl σ Impl. Expl.

Chain100 202 102 1 0.0047 0
10−3 ∗ 13
0.005 8 10

Chain200 402 202 1 0.0024 0
10−3 ∗ 11
0.003 7 10

Chain400 802 402 1 0.0012 0
10−3 ∗ 10
0.002 7 10

Channel100 800 400 400 0 0
10−3 − 5

1 − 5

Channel200 1600 800 800 0 0
10−3 − 5

1 − 5

Channel400 1600 800 800 0 0
10−3 − 5

1 − 5
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Numerical Experiments: Regularization (mss1)

n = 90, m = 73, σ = 103

Fails at step 1 when δ0 = 0

Start with δ0 = 10−2
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Conclusions and Future Work

Simpler∗ approach to nonlinear programming!

Shows promise when augmented systems efficiently solvable (e.g.
PDE-constrained optimization)

Current implementation Matlab and C++ (part of ROL package
of Sandia’s Trilinos library)

Many practical matters to be resolved:

Robust tolerance rules for inexact solves

Good heuristics for updating penalty parameter

Stability of inequality constrained problems near boundary

Test on more PDE-constrained optimization problems!
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