The Merits of Keeping it Smooth: Implementing a Smooth Exact Penalty Function for Nonlinear Optimization

> Ron Estrin ICME, Stanford University

UBC SCAIM Seminar Sept. 18, 2018

Joint Work with Michael Friedlander, Dominique Orban, and Michael Saunders

Constrained Optimization

Equality-constrained nonlinear program:

$$\underset{x \in \mathbb{R}^{n}}{\text{minimize}} \quad f(x) \quad \text{subject to} \quad c(x) = 0,$$

with *n* variables, $m \leq n$ constraints, and $f, c \in C_3$.

Focus on equality constraints only for now, discuss inequality/bound constraints later.

Such problems are ubiquitous in the computational sciences for applications including:

- Structural Design
- Systems biology
- Machine learning
- Optimal control
- Robotics planning

• ...

Example: PDE-Constrained Optimal Control Inverse Poisson Problem:

$$\min_{u,z} \qquad \frac{1}{2} \int_{\Omega} (u(x) - \bar{u}(x))^2 dx + \frac{\alpha}{2} \int_{\Omega} z(x)^2 dx$$

s.t
$$-\nabla \cdot (z \nabla u) = f, \quad \text{in } \Omega$$

$$u = 0, \quad \text{on } \partial\Omega,$$

where $\Omega = [0, 1]^2$, \bar{u} is observed data, and f is given source.

- *u* is the *state* (e.g., temperature)
- z is the control (e.g., heat conduction coefficient)

Example: PDE-Constrained Optimal Control Inverse Poisson Problem:

$$\min_{u,z} \qquad \frac{1}{2} \int_{\Omega} (u(x) - \bar{u}(x))^2 dx + \frac{\alpha}{2} \int_{\Omega} z(x)^2 dx$$

s.t
$$-\nabla \cdot (z \nabla u) = f, \quad \text{in } \Omega$$

$$u = 0, \quad \text{on } \partial\Omega,$$

where $\Omega = [0, 1]^2$, \bar{u} is observed data, and f is given source.

- *u* is the *state* (e.g., temperature)
- z is the control (e.g., heat conduction coefficient)

Problem structure:

- Want computed state to match observations
- Want control variable to be "reasonable" (regularization)
- State must be physically meaningful given control

Solving Constrained Optimization Problems

Necessary conditions for optimal primal-dual solution (x^*, y^*) :

$$c(x^*) = 0,$$

 $g(x^*) = A(x^*)y^*.$

Equivalently, $L(x, y) = f(x) - y^T c(x)$ and

$$\nabla L(x^*,y^*)=0.$$

Constrained solvers built around root-finding of above equations.

Notation:

$$g := \nabla f(x), \qquad A := \left[\nabla c(x) \right]$$

Solving Constrained Optimization Problems

Plethora of methods available, but still an active area of research!

Common difficulties with constrained methods:

- Finding a feasible point is just as difficult as solving problem
- Complicated heuristics to trade off optimality vs. feasibility
- Require feasibility restoration phases
- Most solvers built using explicit matrix-factorizations

Solving Constrained Optimization Problems

Plethora of methods available, but still an active area of research!

Common difficulties with constrained methods:

- Finding a feasible point is just as difficult as solving problem
- Complicated heuristics to trade off optimality vs. feasibility
- Require feasibility restoration phases
- Most solvers built using explicit matrix-factorizations

Alternative approach:

- Move constraint violation into the objective
- Solve unconstrained problem
- Additionally: want to avoid matrix-factorizations

Penalty methods for Nonlinear Programming

Add some measure of constraint violation in objective

Quadratic penalty

$$\min_{x} f(x) + \frac{\sigma_k}{2} \|c(x)\|_2^2$$

- Perturbs the solution.
- Need to solve sequence of problems with $\sigma_k \to \infty$.

Penalty methods for Nonlinear Programming

Add some measure of constraint violation in objective

Quadratic penalty

$$\min_{x} f(x) + \frac{\sigma_k}{2} \|c(x)\|_2^2$$

- Perturbs the solution.
- Need to solve sequence of problems with $\sigma_k \to \infty$.
- ℓ_1 -penalty

$$\min_{x} f(x) + \sigma \|c(x)\|_1$$

• Non-smooth.

Penalty methods

Add some measure of constraint violation in objective

• Augmented Lagrangian method

$$\min_{x} f(x) - y_{k}^{T} c(x) + \frac{\sigma_{k}}{2} \|c(x)\|_{2}^{2}$$

• Need to solve sequence of problems.

Penalty methods

Add some measure of constraint violation in objective

• Augmented Lagrangian method

$$\min_{x} f(x) - y_{k}^{T} c(x) + \frac{\sigma_{k}}{2} \|c(x)\|_{2}^{2}$$

- Need to solve sequence of problems.
- Would like exact penalty function which is smooth...

Fletcher's Penalty Function

Primal only Lagrangian:

$$L(x,y) := f(x) - y^T c(x)$$

Fletcher's penalty function:

$$\phi_{\sigma}(x) := f(x) - c(x)^{T} y_{\sigma}(x)$$

$$y_{\sigma}(x) := \arg\min_{y} \frac{1}{2} ||g - Ay||_{2}^{2} + \sigma c(x)^{T} y$$

Notation:

$$g := \nabla f(x), \qquad A := \left[\nabla c(x) \right], \qquad Y_{\sigma} := \left[\nabla y_{\sigma}(x) \right]$$

٠

Variations

Smooth Primal

(Fletcher, 1970)

$$\phi_{0,\rho}(x) := f(x) - y(x)^T c(x) + \frac{1}{2}\rho \|c(x)\|_2^2$$

Smooth Primal-Dual (Di Pillo and Grippo, 1989; Zavala and Anitescu, 2014)

$$\psi_{\alpha,\beta}(x,y) := L(x,y) + \frac{1}{2}\alpha \|c(x)\|_2^2 + \frac{1}{2}\beta \|\nabla L(x,y)\|_2^2$$

An Illustration

(a) 'hs007' with feasible set.

(b) ϕ_{σ} for problem 'hs007'.

Derivatives

More notation (sorry!):

$$g_{\sigma}(x) = \nabla_{x} L(x, y_{\sigma}), \qquad H_{\sigma}(x) = \nabla_{xx} L(x, y_{\sigma})$$

Derivatives

More notation (sorry!):

$$g_{\sigma}(x) = \nabla_{x}L(x, y_{\sigma}), \qquad H_{\sigma}(x) = \nabla_{xx}L(x, y_{\sigma})$$

Gradient of penalty function:

$$\nabla \phi_{\sigma}(\mathbf{x}) = \mathbf{g}_{\sigma} - \mathbf{Y}_{\sigma}\mathbf{c}$$

Hessian of penalty function:

$$\nabla^2 \phi_{\sigma}(x) = H - \sum_{i=1}^m (y_{\sigma})_i H_i - A Y_{\sigma}^T - Y_{\sigma} A^T - \nabla [Y_{\sigma}(\cdot)c]$$
$$= H_{\sigma} - A Y_{\sigma}^T - Y_{\sigma} A^T - \nabla [Y_{\sigma}(\cdot)c]$$

First-Order Optimality Conditions

 (x_*, y_*) is first-order KKT point:

$$c(x_*) = 0, \qquad g(x_*) - A(x_*)y_* = 0.$$

First-Order Optimality Conditions

 (x_*, y_*) is first-order KKT point:

$$c(x_*) = 0, \qquad g(x_*) - A(x_*)y_* = 0.$$

Gradient of penalty function:

$$\nabla \phi_{\sigma}(x) = g - A y_{\sigma} - Y_{\sigma} c.$$

Then $y_* = y_\sigma(x_*)$ and $\nabla \phi_\sigma(x_*) = 0$

 \implies 1st order KKT points are stationary points of ϕ_{σ} .

Second-Order Optimality Conditions

 (x_*, y_*) is second-order KKT point:

 $d^T \nabla^2_{xx} L(x_*, y_*) d \ge 0,$ for d such that $A(x_*)^T d = 0$

Second-Order Optimality Conditions

 (x_*, y_*) is second-order KKT point:

 $d^T \nabla^2_{xx} L(x_*, y_*) d \ge 0,$ for d such that $A(x_*)^T d = 0$

Hessian of Penalty function:

$$\nabla^{2}\phi_{\sigma}(x_{*}) = H_{\sigma} - AY_{\sigma}^{T} - Y_{\sigma}A^{T} - \nabla[Y_{\sigma}(\cdot)c]$$
$$= H_{\sigma} - H_{\sigma}P_{A} - P_{A}H_{\sigma} + 2\sigma P_{A}$$
$$= \bar{P}_{A}H_{\sigma}\bar{P}_{A} - P_{A}H_{\sigma}P_{A} + 2\sigma P_{A}$$

Projectors:
$$P_A = A(A^T A)^{-1}A^T$$
, $\bar{P}_A = I - P_A$.

Second-Order Optimality Conditions

Hessian of Penalty function:

$$abla^2 \phi_\sigma(x_*) = ar{P}_A H_\sigma ar{P}_A - P_A H_\sigma P_A + 2\sigma P_A$$

Then
$$\nabla^2 \phi_{\sigma}(x_*) \succeq 0 \iff \sigma \ge \sigma_* = \frac{1}{2} \lambda_{\max}(P_A H_{\sigma} P_A)$$

 \implies 2nd order KKT points are minimizers of ϕ_{σ} for $\sigma \geq \sigma_*$.

 $\phi_{\sigma}(x)$ is a smooth, exact penalty function.

If σ is chosen large enough, it is enough to minimize $\phi_{\sigma}(x)$ once to obtain KKT point to original NLP.

- (Weakly-exact: spurious minima rare but still possible)
- Can use $\phi_{\sigma,\rho} = \phi_{\sigma}(x) + \frac{1}{2}\rho \|c(x)\|_2^2$ to resolve this

Benefits of this approach

- Conceptually simple minimization (no optimality/feasibility trade-off heuristics)
- No feasibility restoration*
- No Maratos effect (slow convergence for nonsmooth penalties)
- $\bullet\,$ Solve single unconstrained problem if σ known in advance

Benefits of this approach

- Conceptually simple minimization (no optimality/feasibility trade-off heuristics)
- No feasibility restoration*
- No Maratos effect (slow convergence for nonsmooth penalties)
- $\bullet\,$ Solve single unconstrained problem if σ known in advance
- Naturally accommodates *matrix-free* optimization (only matrix-vector products; no factorizations)
- Naturally accommodates inexact optimization

The technical part

In order to minimize $\phi_\sigma,$ need procedures for:

- function evaluation, $\phi_{\sigma}(x)$,
- gradient evaluation, $abla \phi_\sigma(x)$, and
- approximate Hessian-vector products: compute for any $v \in \mathbb{R}^n$

$$u = B(x)v, \qquad B(x) \approx \nabla^2 \phi_\sigma(x)$$

The technical part

In order to minimize $\phi_\sigma,$ need procedures for:

- function evaluation, $\phi_{\sigma}(x)$,
- gradient evaluation, $abla \phi_\sigma(x)$, and
- approximate Hessian-vector products: compute for any $v \in \mathbb{R}^n$

$$u = B(x)v, \qquad B(x) \approx \nabla^2 \phi_\sigma(x)$$

Therefore need procedures for computing:

*y*_σ

• products with Y_{σ} and Y_{σ}^{T}

Function Evaluation

Multiplier estimate:

$$y_{\sigma}(x) = rgmin_{y} rac{1}{2} \|g - Ay\|_{2}^{2} + \sigma c(x)^{T} y$$

which is solved by

$$A^T A y_\sigma = A^T g - \sigma c$$

or equivalently,

$$\begin{bmatrix} I & A \\ A^{T} & 0 \end{bmatrix} \begin{bmatrix} g_{\sigma} \\ y_{\sigma} \end{bmatrix} = \begin{bmatrix} g \\ \sigma c \end{bmatrix}$$

Products with Y_{σ}

First, Jacobian of y_{σ} :

$$Y_{\sigma} = (H_{\sigma} - \sigma I)A(A^{T}A)^{-1} + S(x, g_{\sigma})^{T}(A^{T}A)^{-1}$$

where

$$S(x,v)u = \begin{bmatrix} v^T H_1 u \\ \vdots \\ v^T H_m u \end{bmatrix}, \qquad S(x,v)^T u = \sum_{i=1}^m u_i H_i v$$

(Notice that $S(x_*, g_{\sigma}) = 0$ since $g_{\sigma} = 0$ at solution).

Products with Y_{σ}

$$Y_{\sigma}u = (H_{\sigma} - \sigma I)A(A^{T}A)^{-1}u + S(x, g_{\sigma})^{T}(A^{T}A)^{-1}u$$
$$= (H_{\sigma} - \sigma I)(-w) + \sum_{i=1}^{m} v_{i}H_{i}g_{\sigma}$$

where

$$\begin{bmatrix} I & A \\ A^T & 0 \end{bmatrix} \begin{bmatrix} w \\ v \end{bmatrix} = \begin{bmatrix} 0 \\ -u \end{bmatrix}.$$

Products with Y_{σ}^{T}

$$Y_{\sigma}^{\mathsf{T}} u = (A^{\mathsf{T}} A)^{-1} A^{\mathsf{T}} (H_{\sigma} - \sigma I) u + (A^{\mathsf{T}} A)^{-1} S(x, g_{\sigma}) u$$
$$= v$$

where

$$\begin{bmatrix} I & A \\ A^{\mathsf{T}} & 0 \end{bmatrix} \begin{bmatrix} w \\ v \end{bmatrix} = \begin{bmatrix} (H_{\sigma} - \sigma I)u \\ -S(x, g_{\sigma})u \end{bmatrix}.$$

Gradient Computation

Gradient:

$$\nabla \phi_{\sigma} = \mathbf{g}_{\sigma} - \mathbf{Y}_{\sigma} \mathbf{c}$$

Need to solve one additional augmented system.

Hessian products

Hessian product:

$$\nabla^{2}\phi_{\sigma}(x)v = H_{\sigma}v - AY_{\sigma}^{T}v - Y_{\sigma}A^{T}v - \nabla[Y_{\sigma}(\cdot)c]v$$

$$\approx H_{\sigma}v - AY_{\sigma}^{T}v - Y_{\sigma}A^{T}v \qquad \text{(remove third derivatives)}$$

$$\approx H_{\sigma}v - P_{A}H_{\sigma}v - H_{\sigma}P_{A}v + 2\sigma P_{A}v$$

Can further approximate by removing terms which are zero at solution.

Two augmented system solves per product.

Hessian products

Hessian product:

$$\nabla^{2}\phi_{\sigma}(x)v = H_{\sigma}v - AY_{\sigma}^{T}v - Y_{\sigma}A^{T}v - \nabla[Y_{\sigma}(\cdot)c]v$$

$$\approx H_{\sigma}v - AY_{\sigma}^{T}v - Y_{\sigma}A^{T}v \qquad \text{(remove third derivatives)}$$

$$\approx H_{\sigma}v - P_{A}H_{\sigma}v - H_{\sigma}P_{A}v + 2\sigma P_{A}v$$

Can further approximate by removing terms which are zero at solution.

Two augmented system solves per product.

Fletcher showed that even with these approximations, **superlinear/quadratic convergence** can still be retained.

 $\phi_{\sigma}(x)$ is smooth and exact.

 $\phi_{\sigma}(x)$ is smooth and exact.

Can evaluate function, gradient and approximate Hessian products.

 $\phi_{\sigma}(x)$ is smooth and exact.

Can evaluate function, gradient and approximate Hessian products.

Pick your favourite unconstrained minimizer, and done!

 $\phi_{\sigma}(x)$ is smooth and exact.

Can evaluate function, gradient and approximate Hessian products.

Pick your favourite unconstrained minimizer, and done!

The end! Questions?

 $\phi_{\sigma}(x)$ is smooth and exact.

Can evaluate function, gradient and approximate Hessian products.

Pick your favourite unconstrained minimizer, and done!

The end! Questions? ...Not quite

A few notes and observations:

• Trust-region > linesearch (indefinite Hessians)

- Trust-region > linesearch (indefinite Hessians)
- Solving augmented system (direct vs. iterative)

- Trust-region > linesearch (indefinite Hessians)
- Solving augmented system (direct vs. iterative)
- Handling linear constraints

- Trust-region > linesearch (indefinite Hessians)
- Solving augmented system (direct vs. iterative)
- Handling linear constraints
- Singular Jacobians (regularization)

- Trust-region > linesearch (indefinite Hessians)
- Solving augmented system (direct vs. iterative)
- Handling linear constraints
- Singular Jacobians (regularization)
- Adjusting penalty parameter, initial points, unboundedness...

Solving the Augmented System

Direct Solvers

- Factorize augmented system once per iteration
- Sparse LDL
- Semi-normal equations (Q-less QR) + iterative refinement

Iterative methods

- Results in *matrix-free* implementation
- Inexact function/gradient evaluation controlled via iterative solver tolerance
- Efficient with good preconditioners

Solving the Augmented System: LSLQ/LNLQ

Iterative methods for least-squares (LSLQ) or least-norm problems (LNLQ).

- Equivalent to SYMMLQ on normal equations
- Given $\sigma_{est} \leq \sigma_{\min}(A)$, can monitor $||w_* w_k||$ and $||v_* v||$
- For near-optimal preconditioners, where $A^T = \begin{bmatrix} A_u^T & A_z^T \end{bmatrix}$ and $\mathcal{P} = A_u^T A_u$, then $\sigma_{\min} \left(\mathcal{P}^{-1} A^T A \right) \ge 1$

Inexact Evaluation

Certain trust-region methods (Conn, Gould and Toint 2000; Heinkenschloss and Ridzal, 2014) converge provided that

$$\begin{split} \|\phi_{\sigma} - \widetilde{\phi_{\sigma}}\| &\leq M\eta_{1}, \\ \|\nabla\phi_{\sigma} - \widetilde{\nabla\phi_{\sigma}}\| &\leq M\eta_{2}, \end{split}$$

where η_i is a prescribed accuracy, and M > 0 is a fixed constant (need not be known).

Inexact Evaluation

Certain trust-region methods (Conn, Gould and Toint 2000; Heinkenschloss and Ridzal, 2014) converge provided that

$$\begin{split} \|\phi_{\sigma} - \widetilde{\phi_{\sigma}}\| &\leq M\eta_{1}, \\ \|\nabla\phi_{\sigma} - \widetilde{\nabla\phi_{\sigma}}\| &\leq M\eta_{2}, \end{split}$$

where η_i is a prescribed accuracy, and M > 0 is a fixed constant (need not be known).

Can bound terms according to residual or error of augmented system.

Error expressions tedious—in practice, use ad-hoc fixed error bound.

Handling Linear Constraints

Suppose some constraints are linear:

$$\underset{x \in \mathbb{R}^{n}}{\text{minimize}} \quad f(x) \quad \text{subject to} \quad c(x) = 0, \qquad B^{T}x = d,$$

Handling Linear Constraints

Suppose some constraints are linear:

$$\underset{x \in \mathbb{R}^n}{\text{minimize}} \quad f(x) \quad \text{subject to} \quad c(x) = 0, \qquad B^T x = d,$$

Change penalty function minimization to:

$$\min_{x} \qquad \phi_{\sigma}(x) := f(x) - c(x)^{T} y_{\sigma}(x)$$
s.t.
$$B^{T} x = d$$

Handling Linear Constraints

Suppose some constraints are linear:

$$\underset{x \in \mathbb{R}^n}{\text{minimize}} \quad f(x) \quad \text{subject to} \quad c(x) = 0, \qquad B^T x = d,$$

Change penalty function minimization to:

$$\min_{x} \qquad \phi_{\sigma}(x) := f(x) - c(x)^{T} y_{\sigma}(x)$$

s.t.
$$B^{T} x = d$$

Benefits:

- Threshold value σ_* decreases
- Penalty function better conditioned

If $A = \nabla c$ is rank-deficient, then ϕ_{σ} can be undefined.

If $A = \nabla c$ is rank-deficient, then ϕ_{σ} can be undefined.

Regularize least-squares problem:

$$\phi_{\sigma}(x;\delta) = f(x) - c(x)^{T} y_{\sigma}(x;\delta)$$
$$y_{\sigma}(x;\delta) = \arg\min_{y} \frac{1}{2} \left\| \begin{bmatrix} g \\ 0 \end{bmatrix} - \begin{bmatrix} A \\ \delta I \end{bmatrix} y \right\|_{2}^{2} + \sigma c(x)^{T} y$$

If $A = \nabla c$ is rank-deficient, then ϕ_{σ} can be undefined.

Regularize least-squares problem:

$$\phi_{\sigma}(x;\delta) = f(x) - c(x)^{T} y_{\sigma}(x;\delta)$$
$$y_{\sigma}(x;\delta) = \arg\min_{y} \frac{1}{2} \left\| \begin{bmatrix} g \\ 0 \end{bmatrix} - \begin{bmatrix} A \\ \delta I \end{bmatrix} y \right\|_{2}^{2} + \sigma c(x)^{T} y$$

Only change: augmented system becomes

$$\begin{bmatrix} I & A \\ A^T & -\delta^2 I \end{bmatrix} \begin{bmatrix} w \\ v \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

Assume that $A(x^*)$ has full-rank at x_* (LICQ).

• $\delta > 0$ perturbs the solution.

Assume that $A(x^*)$ has full-rank at x_* (LICQ).

- $\delta > 0$ perturbs the solution.
- Want $\delta \rightarrow 0$ to recover exact solution.

Assume that $A(x^*)$ has full-rank at x_* (LICQ).

- $\delta > 0$ perturbs the solution.
- Want $\delta \rightarrow 0$ to recover exact solution.
- Want to retain superlinear/quadratic convergence.

Assume that $A(x^*)$ has full-rank at x_* (LICQ).

- $\delta > 0$ perturbs the solution.
- Want $\delta \rightarrow 0$ to recover exact solution.
- Want to retain superlinear/quadratic convergence.

for k=1,2,... do

$$\delta_k \leftarrow \max \{\min\{\delta_{k-1}, \|\nabla \phi_\sigma(x_k; \delta_{k-1})\|\}, \delta_{k-1}^2\}$$

Get x_{k+1} from one step on $\phi_\sigma(x_k; \delta_k)$
end for

If quadratically convergent method used, entire method above remains quadratically convergent.

Inequality Constraints

Consider problem

$$\min_{x} \quad f(x) \\ \text{s.t.} \quad c(x) = 0, \\ x \ge 0.$$

Inequality Constraints

Consider problem

$$\min_{x} f(x)$$
s.t. $c(x) = 0,$
 $x \ge 0.$

Modify Fletcher's penalty function to

$$\begin{split} \min_{x} & \phi_{\sigma}(x) := f(x) - c(x)^{T} y_{\sigma}(x) \\ \text{s.t.} & x \ge 0 \\ & y_{\sigma}(x) := \arg\min_{y} \frac{1}{2} \|g - Ay\|_{\mathbf{X}}^{2} + \sigma c(x)^{T} y \end{split}$$

Inequality Constraints

- Minimize smooth function over bound constraints
- Smoothness holds for x > 0 (use interior method)
- Exactness still holds
- Need to now solve augmented system:

$$\begin{bmatrix} I & X^{\frac{1}{2}}A \\ A^T X^{\frac{1}{2}} & 0 \end{bmatrix} \begin{bmatrix} w \\ v \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

Numerical Experiments: Inverse Poisson Problem

Solve inverse-poisson problem from earlier.

Discretize using finite elements, n = 2050, m = 961, $\alpha = 10^{-4}$.

Use Matlab implementation of Newton-CG trust-region solver (TRON). Solve linear system with error accuracy η :

η	Iter.	#Hv	#Av	#A'v	
10^{-2}	29	874	1794	2608	
10^{-4}	27	830	1950	2728	
10^{-6}	27	866	2317	3129	
10^{-8}	27	866	2673	3485	
10^{-10}	27	866	3145	3957	

Thanks to Drew Kouri (Sandia) for implementing the model!

Numerical Experiments: Linear Constraints

Problem	n	m _{lin}	m _{nln}	$\sigma^*_{\sf impl}$	σ^*_{expl}	σ	Impl.	Expl.
Chain100	202	102	1	0.0047	0	10-3	*	13
						0.005	8	10
Chain200	402	202	1	0.0024	0	10^{-3}	*	11
						0.003	7	10
Chain400	802	402	1	0.0012	0	10^{-3}	*	10
						0.002	7	10
Channel100	800	400	400	0	0	10^{-3}	_	5
						1	_	5
Channel200	1600	800	800	0	0	10^{-3}	_	5
						1	_	5
Channel400	1600	800	800	0	0	10^{-3}	_	5
						1	_	5

Numerical Experiments: Regularization (mss1)

•
$$n=90,~m=73,~\sigma=10^3$$

• Fails at step 1 when $\delta_0 = 0$

• Start with $\delta_0 = 10^{-2}$

iter	merit	objective	opt Error	du Feas	nln Feas	y	penalty	delta
0	3.525544e+05	-4.050000e+03	5.964e+03	4.979e+02	8.900e+01	1.818e+06	1.0e+03	1.0e-02
1	3.388800e+05	-1.806637e+03	8.528e+03	3.277e+02	3.915e+01	1.815e+06		
2	3.369551e+05	-1.802047e+03	8.540e+03	3.263e+02	3.905e+01	1.810e+06		
3	3.350170e+05	-1.797264e+03	8.533e+03	3.271e+02	3.896e+01	1.804e+06		
4	3.330739e+05	-1.792274e+03	8.507e+03	3.279e+02	3.886e+01	1.799e+06		
5	3.311332e+05	-1.787067e+03	8.465e+03	3.287e+02	3.877e+01	1.794e+06		
45	-1.600001e+01	-1.600155e+01	8.443e-04	4.761e-02	1.656e-06	1.741e+02		
46	-1.600001e+01	-1.600154e+01	6.603e-05	4.748e-02	1.656e-06	1.741e+02		1.0e-04
47	-1.600000e+01	-1.599998e+01	6.924e-03	3.513e-03	3.921e-07	1.753e+02		
48	-1.600000e+01	-1.600000e+01	1.898e-04	1.905e-04	9.392e-10	1.753e+02		
49	-1.600000e+01	-1.600000e+01	1.762e-05	1.762e-05	2.893e-10	1.753e+02		
50	-1.600000e+01	-1.600000e+01	1.813e-06	5.356e-06	1.674e-10	1.753e+02		
51	-1.600000e+01	-1.600000e+01	5.934e-08	5.361e-06	1.660e-10	1.753e+02		
52	-1.600000e+01	-1.600000e+01	4.840e-09	5.554e-06	1.663e-10	1.753e+02		1.0e-07
53	-1.600000e+01	-1.600000e+01	7.565e-08	3.905e-08	4.923e-12	1.753e+02		

EXIT: Optimal solution found

Conclusions and Future Work

Simpler* approach to nonlinear programming!

- Shows promise when augmented systems efficiently solvable (e.g. PDE-constrained optimization)
- Current implementation Matlab and C++ (part of ROL package of Sandia's Trilinos library)

Conclusions and Future Work

Simpler* approach to nonlinear programming!

- Shows promise when augmented systems efficiently solvable (e.g. PDE-constrained optimization)
- Current implementation Matlab and C++ (part of ROL package of Sandia's Trilinos library)

Many practical matters to be resolved:

- Robust tolerance rules for inexact solves
- Good heuristics for updating penalty parameter
- Stability of inequality constrained problems near boundary
- Test on more PDE-constrained optimization problems!