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Abstract

Part I involves iterative methods for solving linear systems, least-squares problems, and

least-norm problems. We show that solution error bounds at each iteration of these methods

can be computed efficiently provided certain additional spectral information of the linear

operators involved. Part II develops a smooth exact penalty method for constrained nonlinear

optimization based on the work of Fletcher (1970, 1973b), where the methods of Part I play

a central role in evaluating the penalty function and its gradients.

Often the most computationally intensive operation in numerical methods is solving

linear systems, least-squares, and least-norm problems. Further, these linear systems often

do not need to be solved to high accuracy—many methods can accept solutions solved

to a prescribed accuracy. For positive definite systems, Part I develops Euclidean-norm

error bounds for the Krylov methods SYMMLQ and CG using Gauss-Radau quadrature,

when provided an underestimate of the smallest eigenvalue. For least-squares and least-

norm problems, we develop solvers LSLQ and LNLQ (equivalent to SYMMLQ applied to

the associated normal equations) and extend the error-bounding procedure for SYMMLQ to

LSLQ and LNLQ. Similarly, the error-bounding procedure for CG is extended to LSQR and

CRAIG. We compare with existing approaches for bounding errors, using linear systems from

a standard test set and from the penalty method of Part II. Our approach is remarkably

tight for the LQ methods (when good estimates of the spectrum are available), and gives

reliable bounds for the CG-based methods.

In Part II, we develop a general constrained nonlinear optimization algorithm based

on a smooth penalty function proposed by Fletcher (1970, 1973b). We first present the

penalty function for equality-constrained problems, then provide a new smooth extension

to inequality constrained problems. Although it was historically considered to be compu-

tationally prohibitive in practice, we demonstrate that the computational kernels required

are no more expensive than other widely accepted methods for nonlinear optimization. The

main computational kernel required to evaluate the penalty function and its derivatives is

solving a structured linear system. This system can be solved efficiently by storing a single

factorization per iteration. Alternatively, we can adapt the penalty function to the class

of factorization-free algorithms by solving the linear system iteratively, using for example

the methods described in Part I. The penalty function shows particular promise in cases

where such linear system can be solved efficiently, e.g., for PDE-constrained optimization

problems where efficient preconditioners exist, and opens the door to optimization solvers

that accept inexact evaluations and derivatives. We discuss extensions including handling

simple constraints explicitly, regularizing the penalty function, and demonstrate the merits

of this approach on nonlinear optimization problems with PDE-constraints, and those from

a standard test set.

v



Acknowledgements

My academic journey would not have been possible without the help of innumerable people

with whom I’ve had the privilege to interact with over the last several years. I’m afraid that

nothing that I could write below would truly do them justice for their support, but I will try.

It is difficult to imagine completing this dissertation without the constant support and

kindness of Michael Saunders. He has been an amazing thesis advisor, mentor, friend, and

tennis partner. His truly encyclopedic knowledge of all things numerical has often left me

in awe. Michael is further unsurpassed as a technical writer and copyeditor; every paper

written with him becomes a work of art. I have learned a great deal about writing from our

long editing sessions for each paper, and in the process developed my own idiosyncrasies

when writing. Michael is a giant to aspire to for both his unparalleled technical skill, but

also for his constant gentle and cheerful nature.

I was also incredibly fortunate to have Michael Friedlander take on the role of an advisor.

Coincidentally, Michael F was Michael S’s first PhD student, whereas I am his last (it’s come

full circle!). The second part of this thesis would not be possible without Michael: he let

me to take over the Fletcher penalty project that he previously started with Dominique

Orban, and hosted me for multiple quarters at UBC to work on it together. Michael is

incredible at finding interesting problems that he gladly shares—several times I’ve found

myself captivated by side projects rather than the original purpose of my visits.

Dominique Orban is the other constant (beside Michael Saunders) of every project in this

thesis. He’s a true role model of an academic that can stand with both feet solidly planted in

both numerical linear algebra and optimization, and back up all the theory with professional,

efficient, and beautifully written code. His excitement for working on new projects that

blend these areas is always infectious. I would also like to thank him for supporting my

conference travel on several occasions.

Chen Greif started me on my path in numerical analysis by instructing my first course

in numerical linear algebra, and then supervising my undergraduate thesis on iterative

linear solvers. His exceptional teaching during the course hooked me on the beauty of

scientific computing. Beyond those beginnings, he’s been an amazing collaborator and

mentor (academic and otherwise) throughout my PhD; I also greatly appreciate the several

excuses he’s provided me to come home by hosting me at UBC.

Next, I would like to thank the rest of my thesis committee: Yinyu Ye, Margot Gerritsen,

Lexing Ying, and Juan Alonso. This work benefited substantially from their questions

and suggestions. Yinyu also merits special mention for agreeing to be my official principal

supervisor upon Michael Saunders’s retirement.

It’s well known that the ICME staff are the ones that truly run the department, and I’d

like to thank Indira, Matt, Brian, Claudine, Antoinette, and Amanda for making sure that

the ICME students have everything they need (and making sure we’ve submitted all the

correct forms on time). ICME has had two directors during my time here, and I’d like to

thank both Margot Gerritsen and Gianluca Iaccarino for shaping ICME into the wonderful

research institution it is today.

vi



I’m grateful for the wonderful friends that kept PhD life interesting outside of academics;

those back home, abroad, and at Stanford. I’ve met many of these friends during my time at

Stanford, and what makes ICME such a special place is the many interactions with them

over research, lunch, beers, and board games. A big thanks to all of the students at ICME,

and especially to Nolan, Lan, Anjan, Brad, Arun, Victor, Anil, Austin, Xiaotong, Sven, Ollie,

Ryan, Fred, Dan, Steven, Casey, Jordi, Nimit, Julia, Halwest, Nurbek, and doubly-especially

to Allison (for her unbounded support and unrestrained proofreading).

Stanford Taekwondo, and in particular the team, has been a large part of my life at

Stanford since my first year. They gave me goals to strive for beyond academics, and I am

glad to be part of such an incredible and supportive community. Traveling with the team for

competition or training trips was always a blast.

Above all, I want to thank my parents, Boris and Ella, and younger brother, Dan, for

their unconditional love and support throughout my entire life. Nothing that I could write

here could express how lucky and grateful I feel to have you in my life.

vii



Contents

Abstract v

Acknowledgements vi

1 Introduction 1

1.1 Thesis overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

I Iterative Methods with Error Bounding Properties 3

2 Preliminaries 4

2.1 Methods for symmetric linear systems . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Methods for rectangular linear systems . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Termination criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Error bounds for SYMMLQ and CG 11

3.1 Computing SYMMLQ iterates . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Upper bounds when A is semidefinite . . . . . . . . . . . . . . . . . . . . . . . 12

3.3 Complete algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4 Error estimation with A indefinite . . . . . . . . . . . . . . . . . . . . . . . . 18

3.5 The choice of λest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.6 Previous error estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.7 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.8 Finite-precision and termination considerations . . . . . . . . . . . . . . . . . 25

4 LSLQ: An iterative method for least-squares 27

4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3 Complete algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.4 Error estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.5 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.6 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5 LNLQ: An iterative method for least-norm 45

5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2 Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.3 Complete algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.4 Error estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.5 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.6 Preconditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.7 Implementation and numerical experiments . . . . . . . . . . . . . . . . . . . 57

viii



6 Extensions to SQD systems 62

7 Contributions and future directions 65

7.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7.2 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

II An Exact Penalty Method for Nonlinear Optimization 68

8 Introduction 69

8.1 The proposed penalty function . . . . . . . . . . . . . . . . . . . . . . . . . . 70

8.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

8.3 Related work on penalty functions . . . . . . . . . . . . . . . . . . . . . . . . 72

9 The equality-constrained case 74

9.1 Properties of the penalty function . . . . . . . . . . . . . . . . . . . . . . . . . 74

9.2 Evaluating the penalty function . . . . . . . . . . . . . . . . . . . . . . . . . . 78

9.3 Maintaining explicit constraints . . . . . . . . . . . . . . . . . . . . . . . . . . 81

9.4 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

9.5 Inexact evaluation of the penalty function . . . . . . . . . . . . . . . . . . . . 88

10 The inequality-constrained case 91

10.1 Properties of the penalty function . . . . . . . . . . . . . . . . . . . . . . . . . 92

10.2 Evaluating the penalty function . . . . . . . . . . . . . . . . . . . . . . . . . . 94

11 Practical considerations and experiments 98

11.1 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

11.2 1D Burger’s equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

11.3 2D Inverse Poisson problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

11.4 2D Poisson-Boltzmann problem . . . . . . . . . . . . . . . . . . . . . . . . . . 104

11.5 2D topology optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

11.6 Explicit linear constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

11.7 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

12 Contributions and future directions 111

12.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

12.2 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

A An unstable SYMMLQ implementation 114

B Empirical Check of SYMMLQ and CG Error Bounds 116

C Direct methods for augmented systems 122

D Proof of Theorem 9.13 124

ix



List of Tables

2.1 Linear system problem relations . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Equivalent methods for least-squares and least-norm problems . . . . . . . . . 9

3.1 Cost of computing CG error estimates . . . . . . . . . . . . . . . . . . . . . . 20

7.1 Properties of CG-type and LQ-type methods . . . . . . . . . . . . . . . . . . . 66

11.1 Performance of solving control problem with Burgers equation . . . . . . . . . 100

11.2 Performance of solving control problem with Poisson equation . . . . . . . . . 101

11.3 Performance of solving control problem with bound-constrained Poisson equation102

11.4 Comparison of Fletcher and composite step performance on control problem

with Poisson equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

11.5 Performance of solving control problem with Poisson-Boltzmann equation . . 104

11.6 Performance of solving control problem with bound-constrained Poisson-

Boltzmann equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

11.7 Comparison of Fletcher and composite step performance on control problem

with Poisson-Boltzmann equation . . . . . . . . . . . . . . . . . . . . . . . . . 106

11.8 Comparison of Fletcher and augmented Lagrangian performance on control

problem with Poisson-Boltzmann equation . . . . . . . . . . . . . . . . . . . . 107

11.9 Performance of solving topology optimization problem . . . . . . . . . . . . . 108

11.10Performance when maintaining explicit linear constraints . . . . . . . . . . . 109

11.11Performance of solving problems with regularization . . . . . . . . . . . . . . 110

B.1 Empirical check of SYMMLQ error bounds . . . . . . . . . . . . . . . . . . . . 116

B.2 Empirical check of CG error bounds . . . . . . . . . . . . . . . . . . . . . . . 119

x



List of Figures

3.1 Comparison of SYMMLQ and CG error bounding strategies . . . . . . . . . . 21

3.2 Comparison of error bounding strategies for CG . . . . . . . . . . . . . . . . . 21

3.3 Error bounds for SYMMLQ on two SPD systems . . . . . . . . . . . . . . . . 23

3.4 Error bounds for CG on two SPD systems . . . . . . . . . . . . . . . . . . . . 23

3.5 Effect of λest on SYMMLQ and CG error bounds . . . . . . . . . . . . . . . . 24

3.6 Error bounds for CG on two indefinite systems . . . . . . . . . . . . . . . . . 25

4.1 LSQR, LSMR, LSLQ error on problems small and small2 . . . . . . . . . . . . 28

4.2 Reducing
“
BT

k λI
‰T

to B̂k for k “ 3 via Givens rotations. . . . . . . . . . . . 40

4.3 LSLQ error and bounds for problems large and large2 . . . . . . . . . . . . . . 41

4.4 LSLQ error and bounds for problems large and large2 with regularization . . . 41

4.5 LSQR error and bounds for problems large and large2 with regularization . . . 42

4.6 LSLQ error and bounds for problems small and small2 . . . . . . . . . . . . . 43

4.7 LSLQ and LSQR error and bounds for seismic inverse problems . . . . . . . . 44

5.1 Illustration of factorization in the presence of regularization . . . . . . . . . . 56

5.2 LNLQ and CRAIG error and bounds for Meszaros/scagr7-2c . . . . . . . . . . 58

5.3 LNLQ and CRAIG error and bounds for LPnetlib/lp kb2 . . . . . . . . . . . . 59

5.4 LNLQ and CRAIG error and bounds for Fletcher’s penalty . . . . . . . . . . . 60

5.5 LNLQ and CRAIG error and bounds for Fletcher’s penalty with preconditioning 61

6.1 Error of SYMMLQ applied directly on an SQD system . . . . . . . . . . . . . 64

10.1 Plot of qpxq, a smooth approximation of mintx ´ �, u ´ xu. . . . . . . . . . . 91

A.1 Unstable SYMMLQ performance . . . . . . . . . . . . . . . . . . . . . . . . . 115

xi



xii



Chapter 1

Introduction

Numerical linear algebra and optimization are two core pillars of the computational sciences.

Two subproblems that appear repeatedly in numerical methods are the solution of nonlinearly

constrained optimization problems and the solution of structured linear systems (the former

often depending on the latter). As these are often the most computationally intensive steps

of numerical methods, developing efficient methods for these subproblems has wide-reaching

impact across several application domains.

Ever-increasing problem scales result in larger constrained optimization problems and

linear systems. To accommodate these large-scale problems, factorization-free approaches

have gained popularity: those that avoid matrix-factorization and instead rely on matrix-

vector products. Such approaches already have a rich history in the linear algebra community

in the form of iterative methods, particularly Krylov subspace methods. The maturation of

iterative linear solvers in turn helped increase the popularity of factorization-free optimization

solvers. An early example is the Newton-CG trust-region solver of Steihaug (1983).

Key to the success of many large-scale numerical solvers is the use of inexactness: the idea

that subproblems need not always be solved exactly. One of the earliest applications of this

idea to optimization is the Inexact Newton method of Dembo, Eisenstat, and Steihaug (1982),

which specifies how accurately the Newton linear system needed to be solved at every iteration

to retain fast asymptotic convergence. In such algorithms, although subproblems need not

be solved exactly, they must still be solved to a prescribed accuracy; these approximate

subproblem solutions must be within a prescribed distance of the true solution. It is therefore

of interest to design solvers that provide error bounds on intermediate approximate solutions

to allow methods to stop early while guaranteeing that a prescribed accuracy has been

attained. This is particularly true in the case of solving linear systems, the most common

expensive subproblem encountered, which is the subject of Part I. The iterative methods

of Part I are then used to develop a factorization-free smooth exact penalty method for

nonlinearly constrained optimization in Part II.

1.1 Thesis overview

This thesis is organized in two parts: Part I develops iterative methods for linear systems,

least-squares, and least-norm problems that provide error bounds on iterates, given additional

spectral information on the necessary linear operators. Part II develops a smooth exact

penalty method for nonlinearly constrained optimization based on the work of Fletcher

(1970). These projects are connected by the dependency of Part II on Part I: evaluating our

penalty function requires the solution of structured linear systems that are the subject of

Part I—in particular, when the penalty function is evaluated approximately.

In Chapter 2 we introduce preliminaries for the iterative solution of linear systems,

least-squares, and least-norm problems. Chapter 3 derives a method for computing error

1



2 CHAPTER 1. INTRODUCTION

upper bounds on iterates of methods SYMMLQ and CG for positive definite linear systems.

Chapter 4 and Chapter 5 develop methods LSLQ and LNLQ for least-squares and least-norm

problems respectively; these methods are based on SYMMLQ applied to the corresponding

normal equations, thus allowing us to develop error upper bounds based on the approach in

Chapter 3. Extensions to symmetric quasidefinite systems are discussed in Chapter 6. We

summarize the contributions and discuss future directions in Chapter 7.

Chapter 8 introduces the proposed penalty function for constrained nonlinear program-

ming. Chapter 9 develops the theory for equality-constrained problems including: efficient

evaluation of the penalty function and its derivatives; maintaining explicit linear constraints;

regularizing the penalty function under some forms of constraint degeneracy; and inexact

evaluation of the penalty function. Chapter 10 derives a new smooth extension of the penalty

function for handling inequality constraints. We apply the penalty function to solve several

PDE-constrained optimization problems and problems from a standard test set in Chapter 11.

Contributions and future directions for this part are discussed in Chapter 12.

1.2 Code

Most of the methods presented are implemented in various libraries. These are the ones

used for numerical experiments throughout. The iterative methods of Part I (SYMMLQ,

LSLQ, and LNLQ) are available in Matlab1 and Julia2. Fletcher’s penalty function (Part II)

is implemented in Matlab3 with all of the discussed features. It is also implemented in C++

within Sandia National Labs’ Rapid Optimization Library in Trilinos4 (Heroux et. al., 2003);

this implementation does not include some features such as explicit linear constraints.

1.3 Notation

A word of caution: the scope of notational consistency is mostly limited to individual chapters.

I would like to take this moment to apologize for the inconsistency. This is unfortunately nec-

essary because our work spans the subject matter of multiple communities, each having their

own standardized notation.However, the following notation remains consistent throughout.

We use Householder notation. Matrices are denoted by capital letters A, B, . . . , vectors

by lowercase letters v, w, . . . , and scalars by Greek letters α, β, γ, . . . , with exceptions for c

and s, which may be used for plane reflections with c2 ` s2 “ 1. All vectors are columns, but

the slightly abusive notation pξ1, . . . , ξkq may be used to enumerate their components. We

use I for the identity matrix of the appropriate size, with ek denoting the kth column. Define

� as the vector of all ones. Denote } ¨ } as the Euclidean-norm, and } ¨ }A as the energy norm

defined by }u}2A :“ uTAu for A symmetric positive definite (SPD). Define rns “ t1, 2, . . . , nu.
For square A P Rnˆn, we order its eigenvalues according to λ1 ě λ2 ě ¨ ¨ ¨ ě λn. Similarly,

for rectangular A P Rmˆn, we order the singular values according to σ1 ě σ2 ě ¨ ¨ ¨ ě
σmintm,nu ě 0, and let condpAq “ σ1{σmintm,nu. It should be clear from context if λ and σ

are referring to scalars that are not the eigenvalues or singular values of a linear operator.

1https://github.com/restrin/LinearSystemSolvers
2https://github.com/JuliaSmoothOptimizers/Krylov.jl
3https://github.com/optimizers/FletcherPenalty
4https://github.com/trilinos/Trilinos
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Chapter 2

Preliminaries

We consider solving three related problems

Ax “ b, pA “ AT q (L)

min
x

}Ax ´ b}, (LS)

min
x

}x} subject to Ax “ b, (LN)

where A P Rmˆn is a linear operator with efficiently computable products. We assume that

(L) and (LN) are both consistent. Denote x‹ :“ A:b as the solution of each problem, where

A: is the Moore-Penrose pseudoinverse, which solves

x‹ :“ min
x

}x} subject to x P argmin
x̄

}Ax̄ ´ b}, (MLS)

regardless of whether the system is full-rank or consistent.

For (LN), define y‹ :“ pAAT q:b, which solves

y‹ :“ min
yPRm

}y} subject to AATy “ b,

and satisfies x‹ “ ATy‹.
Problems (LS) and (LN) are equivalent to solving positive-semidefinite linear systems

(the normal equations), or solving a 2 ˆ 2 block system (the augmented system). These are

shown in the second and third columns of Table 2.1.

Table 2.1: Relationships between (L), (LS), and (LN). For each row, the first three columns
describe equivalent problems. The last column gives common methods for each problem.

Problem Normal Equations Augmented System Methods

Ax “ b
CG (HS)

MINRES (PSa)
SYMMLQ (PSa)

min
x

}Ax ´ b} ATAx “ ATb

„
I A
AT 0

 „
r
x


“

„
b
0

 LSQR (PSb)
LSMR (FS)
LSLQ (EOSa)

min
x

}x} : Ax “ b AATy “ b, x “ ATy

„
I AT

A 0

 „
x

´y


“

„
0
b

 CRAIG (C)
LSQR (PSb)
LNLQ (EOSb)

HS (Hestenes and Stiefel, 1952), FS (Fong and Saunders, 2011), C (Craig, 1955),
PSa (Paige and Saunders, 1975), PSb (Paige and Saunders, 1982a),

EOSa (Estrin, Orban, and Saunders, 2019c), EOSb (Estrin, Orban, and Saunders, 2019e)

4



2.1. METHODS FOR SYMMETRIC LINEAR SYSTEMS 5

2.1 Methods for symmetric linear systems

2.1.1 The Lanczos process

The Lanczos (1950) process, described in Algorithm 1, is the basis for most Krylov subspace

methods for symmetric linear systems. In line 1, β1v1 “ b is short for “β1 “ }b}; if β1 “ 0

then exit; else v1 “ b{β1”; similarly for line 5.

Algorithm 1 Lanczos Tridiagonalization Process

Require: A, b
1: β1v1 “ b
2: for k “ 1, 2, . . . do
3: w “ Avk
4: αk “ vTkw
5: βk`1vk`1 “ w ´ αkvk ´ βkvk´1

6: end for

After k steps, the Lanczos process can be summarized as

AVk “ VkTk ` βk`1vk`1e
T
k “ Vk`1Hk, (2.2)

where Vk “ rv1 . . . vks has orthonormal columns in exact arithmetic, and

Tk :“

»
————–

α1 β2

β2 α2

. . .

. . .
. . . βk

βk αk

fi
ffiffiffiffifl

“
«

Tk´1 βkek´1

βke
T
k´1 αk

ff
, Hk :“

«
Tk

βk`1e
T
k

ff
. (2.3)

Note that (2.2) holds up to machine precision under floating-point arithmetic, but Vk quickly

loses orthogonality. For each k, Vk forms a (theoretically) orthonormal basis for the Krylov

subspace Kk “ KkpA, bq :“ t b, Ab, . . . , Ak´1b u.
Krylov subspace methods proceed by defining iterates xk P Kk as the “best” approximation

of the solution x‹:
xk “ argmin

xPKk

ρpxq, (2.4)

where ρ : Rn Ñ R is some measure of how close x is to x‹. By choosing different functions ρ

we can derive the iterative methods that appear in the following section. In practice, we

compute the iterates by expressing xk “ Vkx̄k P Kk and defining an equivalent problem

to (2.4) by seeking Hkx̄k « β1e1 (where the meaning of “«” depends on ρ).

When A is singular, (L) does not have a unique solution. The following proposition shows

that all Krylov methods converge to the same canonical solution when (L) is consistent.

Proposition 2.1 Assume symmetric A is singular but Ax “ b is consistent. Let x‹ be

the solution produced by a Krylov subspace method for solving Ax‹ “ b; that is, x‹ P K� for

some �. Then x‹ is the unique solution to

min
xPRn

}x} subject to Ax “ b. (2.5)
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Proof. The necessary and sufficient conditions for x‹ to solve (2.5) are that Ax‹ “ b and

x‹ P rangepAq. Because Ax “ b is consistent, b P rangepAq, and so the Krylov subspace

is contained in rangepAq, implying that x‹ P Kk Ď rangepAq. Because Ax‹ “ b and

x‹ P rangepAq, it must be the solution to (2.5).

The following sections briefly describe three popular iterative methods for symmetric

linear systems based on the Lanczos process.

2.1.2 CG

The Conjugate Gradient method (CG) (Hestenes and Stiefel, 1952) is arguably the most

popular method for SPD systems. The iterates are defined by

xC
k :“ argmin

xPKk

}x‹ ´ x}2A. (2.6)

An equivalent formulation of CG iterates comes from the Lanczos process, where

xC
k “ Vkx̄

C
k , Tkx̄

C
k :“ β1e1. (2.7)

Further details on how CG iterates are computed can be found in (Saunders, 2019; Demmel,

1997, §6.6.3). When A is not SPD, CG is not advised because A no longer defines a norm

in (2.6), and some iterates may be undefined because Tk could become indefinite or singular.

2.1.3 MINRES

The Minimum Residual method (MINRES) (Paige and Saunders, 1975) handles the case

where A is symmetric but possibly indefinite. Its iterates are defined by

xM
k :“ argmin

xPKk

}Ax ´ b}, (2.8)

which via the Lanczos process is equivalent to

xM
k “ Vkx

M
k , x̄M

k :“ argmin
x̄PRk

}Hkx̄ ´ β1e1}.

Hestenes and Stiefel’s Conjugate Residual method (CR) Hestenes and Stiefel (1952) is

equivalent to MINRES when A is SPD. Note however that MINRES is stable for any symmetric

A, while CR can break down when A is indefinite. Fong and Saunders (2011) derive several

relationships between CR and CG for positive definite systems.

2.1.4 SYMMLQ

The last common method for symmetric linear systems is SYMMLQ (Paige and Saunders,

1975), defined by two equivalent subproblems (Fischer, 1996; Saunders, 2019):

xL
k :“ argmin

xPKk

}x} subject to b ´ Ax K Kk´1

“ argmin
xPRn

}x‹ ´ x}2, with x P AKk´1 :“ spantAb,A2b, . . . , Ak´1b u.
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The equivalent definition via the Lanczos process is

xL
k “ Vkx̄

L
k , x̄L

k :“ argmin
x̄PRk

}x̄} subject to HT
k´1x̄ “ β1e1. (2.9)

SYMMLQ and related methods feature prominently in Part I. The details for its implementa-

tion are given in Chapter 3.

We also give a new, simpler, but totally unstable CG-like implementation in Appendix A.

2.2 Methods for rectangular linear systems

2.2.1 The Golub-Kahan process

The Golub and Kahan (1965) process, described in Algorithm 2, is the basis of many Krylov

subspace methods for nonsymmetric and rectangular linear systems.

Algorithm 2 Golub-Kahan Bidiagonalization Process

Require: A, b
1: β1u1 “ b
2: α1v1 “ ATu1

3: for k “ 1, 2, . . . do
4: βk`1uk`1 “ Avk ´ αkuk

5: αk`1vk`1 “ ATuk`1 ´ βk`1vk
6: end for

Define Uk :“
”
u1 ¨ ¨ ¨ uk

ı
, Vk :“

”
v1 ¨ ¨ ¨ vk

ı
, and

Lk :“

»
———–

α1

β2 α2

. . .
. . .

βk αk

fi
ffiffiffifl, Bk :“

»
—————–

α1

β2 α2

. . .
. . .

βk αk

βk`1

fi
ffiffiffiffiffifl

“
«

Lk

βk`1e
T
k

ff
. (2.10)

The matrices Uk and Vk produced by Algorithm 2 satisfy

AVk “ Uk`1Bk,

ATUk`1 “ VkB
T
k ` αk`1vk`1e

T
k`1 “ Vk`1L

T
k`1,

(2.11)

and in exact arithmetic, the identities UT
k Uk “ Ik and V T

k Vk “ Ik hold as well. Again, (2.11)

holds to machine precision under floating-point arithmetic, but Uk and Vk lose orthogonality.

Algorithm 2 can be interpreted as a more accurate form of Lanczos process (Algorithm 1)

for the Gramian matrices ATA and AAT with starting vectors ATb and b:

ATAVk “ Vk`1L
T
k`1Bk, (2.12a)

AATUk “ Uk`1BkL
T
k. (2.12b)

Thus Vk and Uk are orthonormal bases for KkpATA,ATbq, and KkpAAT, bq respectively. The

relationship between the Golub-Kahan and Lanczos processes leads to a close relationship
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between the methods discussed in Section 2.1, and the methods below for problems (LS) and

(LN). This relationship is further explored in Section 2.2.5.

Below we describe three popular methods for least-squares and least-norm problems.

2.2.2 LSQR

LSQR (Paige and Saunders, 1975) is for least-squares problems (LS); it defines iterates

according to the following equivalent definitions:

xC
k :“ argmin

xPKkpATA,ATbq
}Ax ´ b}, (2.13)

:“ Vkx̄
C
k , x̄C

k :“ argmin
x̄PRk

}Bkx̄ ´ β1e1}. (2.14)

We intentionally use the same notation xC
k because of the equivalence between LSQR and

CG (see Table 2.2).

2.2.3 LSMR

LSMR (Fong and Saunders, 2011) is also for least-squares (LS); it is defined by

xM
k :“ argmin

xPKkpATA,ATbq
}ATpAx ´ bq}, :“ Vkx̄

M
k , x̄M

k :“ argmin
x̄PRk

}LT
k`1Bkx̄ ´ α1β1e1}.

(2.15)

LSMR shares a similar equivalence with MINRES (Table 2.2).

2.2.4 CRAIG

CRAIG (Craig, 1955) is for consisten least-norm problems (LN) and is defined equivalently

in two ways:

xC
k :“ argmin

xPKkpATA,ATbq
}x‹ ´ x}, (2.16a)

“ ATyCk , yCk :“ argmin
yPKkpAAT,bq

}y‹ ´ y}AAT. (2.16b)

From (2.16b), it is clear that CRAIG is equivalent to CG on AATy “ b (and we denote its

iterates by xC
k as well; see Table 2.2). Further, from (2.16a), we see that CRAIG is the

error-minimizing method among all methods producing iterates in KkpATA,ATbq.

2.2.5 Equivalence of methods

Each of the methods described in Section 2.2 can be interpreted as a stable implementation

of the methods in Section 2.1 applied to the corresponding normal equations, given the

connection between the Golub-Kahan and Lanczos processes via (2.12). Table 2.2 summarizes

the relationship between these methods. In particular, we complete the table by introducing

LSLQ (Chapter 4) and LNLQ (Chapter 5). We also prove the relationship between LSQR

applied to least-norm problems and MINRES.
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Table 2.2: Methods for least-squares or least-norm problems and their corresponding equiva-
lent method on the normal equations. Assume that the least-norm problem is consistent.

Method Problem Equivalent to Applied to

LSQR

for x min
x

}Ax ´ b}2
CG

for x ATAx “ ATbLSMR MINRES

LSLQ SYMMLQ

CRAIG

for x min
x

}x}2 : Ax “ b
CG

for y
AATy “ b

x “ ATy
LSQR MINRES

LNLQ SYMMLQ

Proposition 2.2 LSQR applied to Ax “ b in (LN) is equivalent to MINRES applied to

AATy “ b. The iterates satisfy xk “ ATyk, where xk are iterates from LSQR and yk are

from MINRES.

Proof. First note that x P KkpATA,ATbq “ ATKkpAAT, bq is equivalent to there existing

y P KpAAT, bq such that x “ ATy. Observe then that (2.13) is equal to

xk “ argmin
xPKkpATA,ATbq

}Ax ´ b} “ argmin
yPKkpAAT,bq

x“ATy

}AATy ´ b},

which defines the same subproblem as (2.8) for yk.

2.3 Termination criteria

Typically Krylov subspace methods are terminated according to the residual norm }r} “
}b ´ Ax} (which is zero at the solution for consistent systems), or the optimality residual

norm }ATr} (which is always zero at the solution). However, a small residual can still lead

to loose error bounds that depend on the condition number of A, because

}x‹ ´ x} ď }r}}A´1} and
}x‹ ´ x}

}x‹} ď }r}
}b} }A}}A´1}.

It is therefore of interest to design iterative methods capable of estimating and bounding

the error norm directly. The focus of the upcoming chapters is thus to: develop approaches

for computing cheap error bounds at every iteration of CG and SYMMLQ, and then design

iterative methods for (LS) and (LN) for which it is possible to compute such error bounds.

2.3.1 Matrices, moments, and quadrature

We give a brief overview of the seminal work of Golub and Meurant (1994, 1997) that relates

the evaluation of quadratic forms with Gauss quadrature and the Lanczos (1950) process.

These results are vital to developing the error bounds in the upcoming chapters. A more

detailed treatment can be found in Golub and Meurant (2010). Assume for now that A is an

SPD linear operator.



10 CHAPTER 2. PRELIMINARIES

We are interested in evaluating quanties of the form

bTfpAqb “ bT

˜
nÿ

i“1

fpλiqpipTi
¸
b “

nÿ

i“1

fpλiqµ2
i , µi :“ pTi b, i “ 1, . . . , n, (2.17)

where f is an analytic function, A P Rnˆn has eigenvalues λ1 ě ¨ ¨ ¨ ě λn ą 0, and

corresponding eigenvectors tp1, . . . , pnu.
Golub and Meurant (1994) explain that the main insight for evaluating (2.17) comes

from viewing it as a Riemann-Stieltjes integral with piecewise constant Stieltjes measure:

nÿ

i“1

fpλiqµ2
i “

ż σ1

σn

fpλqdµpλq, µpλq :“

$
’’&
’’%

0 if λ ă λnřn
j“i µ

2
j if λi ď λ ă λi´1řn

j“1 µ
2
j if λ1 ď λ,

allowing (2.17) to be evaluated via Gauss quadrature.

The second main insight is the close relationship between Gauss quadrature and the

Lanczos (1950) process. In particular, the nodes and weights of the Gauss quadrature can

be obtained directly from the eigenvalue decomposition of Tk from Algorithm 1 (see Golub

and Meurant (1994, §3)). If upper or lower bounds on the spectrum of A are available, we

can perform Gauss-Radau or Gauss-Lobato quadrature to obtain upper or lower bounds on

(2.17). The connection between such quadratic forms and their approximation via Gaussian

quadrature is most notably studied by Dahlquist, Eisenstat, and Golub (1972), Dahlquist,

Golub, and Nash (1979), and Golub and Meurant (1994, 1997).

In our case, we are interested in upper bounds on (2.17), meaning that we perform

Gauss-Radau quadrature and require an underestimate of the smallest eigenvalue of A,

namely λest ă λn
1. The tightness of the Gauss-Radau quadrature therefore depends on the

tightness of the eigenvalue estimate. If A is semidefinite (with rank r), the sum in (2.17) is

evaluated over the first r eigenvalues. In this case, we require that λest ă λr.

The following theorem summarizes these results.

Theorem 2.3 Let A be positive semidefinite with rank r and Ax “ b consistent, and let

f : p0, 8q Ñ R be such that its derivatives satisfy f p2m`1qpξq ă 0 for all ξ P pλr, λmaxpAqq
and all integers m ě 0. Fix λest P p0, λrq. Let Tk be generated by k steps of the Lanczos

process (Algorithm 1) on pA, bq and let

rTk :“
«

Tk´1 βkek´1

βke
T
k´1 ωk

ff
,

where ωk is chosen such that λminp rTkq “ λest. Then

bTfpAqb ď }b}2eT1 fp rTkqe1.

Proof. The result follows from (Golub and Meurant, 1994, Theorem 3.2) and the section

preceding it, as well as (Golub and Meurant, 1994, Theorem 3.4), although those results

only consider the case where A is SPD.

1In general, if there exists � such that µi “ 0 for all i ą �, it is sufficient for λest ă λ�.



Chapter 3

Euclidean-norm error bounds for CG

and SYMMLQ

We derive error bounds for SYMMLQ and CG iterates using Gauss-Radau quadrature. The

contributions of this paper are predominantly from Estrin, Orban, and Saunders (2019d).

3.1 Computing SYMMLQ iterates

We begin with a brief overview of how SYMMLQ iterates are computed, as well as some of

its key properties. A more detailed treatment is given by Paige and Saunders (1975), from

which we derive most of the notation with minor differences. In particular, we set indices

such that xk P Kk for all Krylov subspace methods. This section further serves to set the

notation used for this chapter.

To obtain xL
k (defined in (2.9)), we compute the LQ factorization Tk´1Q

T
k´1 “ sLk´1,

where Qk´1 is orthogonal and

L̄k´1 :“

»
——————–

γ1
δ2 γ2
ε3 δ3 γ3

. . .
. . .

. . .

εk´1 δk´1 γ̄k´1

fi
ffiffiffiffiffiffifl
.

Note that the diagonal entries of L̄k´1 are γj for j “ 1, . . . , k ´ 2, and the last entry is γ̄k´1.

A single 2ˆ2 reflection is applied on the right to obtain HT
k´1Q

T
k “ rLk´1 0s, so that Lk´1

differs from L̄k´1 only in the last diagonal entry, which becomes γk´1. The reflection is

constructed so that

»
—–

k ´ 1 k

k ´ 1 γ̄k´1 βk

k δ̄k αk

k ` 1 0 βk`1

fi
ffifl

« k ´ 1 k

ck sk
sk ´ck

ff
“

»
—–

k ´ 1 k

γk´1 0

δk γ̄k
εk`1 δ̄k`1

fi
ffifl.

The first iteration begins with k “ 2 (because SYMMLQ iterates are defined only for k ě 2),

and γ̄1 “ α1 and δ̄2 “ β2. For k ě 2, define zk´1 “ pζ1, . . . , ζk´1q as the solution to

Lk´1zk´1 “ β1e1. Then x̄L
k “ QT

k

«
zk´1

0

ff
solves (2.9), so that

xL
k “ Vkx̄

L
k “ VkQ

T
k

«
zk´1

0

ff
“ ĎWk

«
zk´1

0

ff
“ Wk´1zk´1 (3.1)

11
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with the orthogonal matrix ĎWk “ VkQ
T
k “

”
w1 . . . wk´1 w̄k

ı
“

”
Wk´1 w̄k

ı
.

We can readily obtain the kth CG iterate as part of the SYMMLQ iteration. We define

z̄k “ pzk´1, ζ̄kq as the solution to L̄kz̄ “ β1e1, so that we solve (2.7) using Tk “ L̄kQk and

xC
k “ Vkx̄

C
k “ VkQ

T
kz̄k “ ĎWkz̄k “ xL

k ` ζ̄kw̄k. (3.2)

It can further be shown that ζ̄k “ ζk{ck`1, and (3.2) implies that

}xC
k }2 “ }xL

k }2 ` ζ̄2k (3.3)

Paige and Saunders (1975) establish the following results.

Lemma 3.1 The SYMMLQ iterates xL
k satisfy the following properties:

1. xL
k “ xL

k´1 ` ζk´1wk´1 P Kk, with wk´1 K xL
k´1. Furthermore, }xL

k } “ }zk´1} and is

monotonically increasing.

2. Since xL
k is updated along orthogonal directions, }x‹ ´ xL

k }2 “ }x‹}2 ´ }xL
k }2 is mono-

tonically decreasing.

3.2 Upper bounds when A is semidefinite

In this section, we derive an upper bound on the error in SYMMLQ and build upon it to

derive an upper bound for CG. As with other Gauss-Radau based approaches, we assume

the availability of a non-zero underestimate to the smallest non-zero eigenvalue of A.

We assume that A is positive semidefinite with rank r ď n, but that Ax “ b is consistent.

The situation where A is SPD is simply a special case. By Proposition 2.1, SYMMLQ and CG

identify the pseudoinverse solution x‹ “ A:b “ argminxt}x} | Ax “ bu. The Rayleigh-Ritz

theorem states that

λr “ mintvTAv | v P rangepAq, }v} “ 1u.
In addition, for any u P Rk with }u} “ 1, Vku P rangepAq because each vi P rangepAq, and
}Vku} “ 1. Then, each Tk is positive definite because uTTku “ pVkuqTApVkuq ě λr ą 0.

Because each xL
k and xC

k lies in rangepAq by definition, the SYMMLQ and CG iterations

occur as if they were applied to the symmetric and positive definite system consisting in the

restriction of Ax “ b to rangepAq.

3.2.1 Existing error estimates for Krylov subspace methods

There has been significant interest in estimating the A-norm of the CG error, the history

of which is detailed by Strakoš and Tichý (2002). The Euclidean-norm has received less

attention as it is more difficult to estimate for CG, although it has been studied by Strakoš

and Tichý (2002), Golub and Meurant (1997), Meurant (1997, 2005), and Frommer, Kahl,

Lippert, and Rittich (2013). Although estimates for the CG error are derived by Meurant

(2005), they are not proved to be upper bounds, while those of Frommer et al. (2013) are

upper bounds but can be more expensive in ill-conditioned cases in order to achieve improved

accuracy (by increasing d in Section 3.6). The only Euclidean-norm SYMMLQ error upper
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bounds we are aware of are those of Szyld and Widlund (1993), who provide a pessimistic

geometric error decay rate.

The strategy behind estimating error norms (including our own) is to recognize the error

and related quantities as quadratic forms rTfpAqr evaluated at A for a certain function

f (e.g., fpξq “ ξ´2 and r “ b ´ Ax) and seek estimates of this quadratic form using the

techniques in Section 2.3.1.

3.2.2 Upper bounds on the SYMMLQ error

According to (3.1) and result 2 of Lemma 3.1, we have

}x‹ ´ xL
k }2 “ }x‹}2 ´ }xL

k }2 “ }x‹}2 ´ }zk´1}2. (3.4)

Thus it is sufficient to find an upper bound on }x‹}2 “ bTA´2b, assuming temporarily for

the clarity of exposition that A is SPD. In this section, we show how to obtain such a bound

at the cost of a few scalar operations per iteration.

We are interested in the choices fpξq “ ξ´2 (with ξ “ A) as well as fpξq “ ξ´1 (with

ξ “ A2). Although these appear to be exactly the same, the estimation procedure and

convergence properties of the estimates are different when A is indefinite, since A2 is

guaranteed to be positive semidefinite.

When A is only semidefinite, we need to estimate }x‹}2 “ bT
`
A:˘2

b “ bTfpAqb, where

fpξq “
#
ξ´2 ξ ą 0,

0 ξ “ 0.
(3.5)

We therefore obtain upper bounds of bTfpAqb using Gauss-Radau quadrature by invoking

Theorem 2.3. We therefore need to compute ωk in rTk from Theorem 2.3, then efficiently

evaluate the quadratic form using rTk. In Golub and Meurant (1997) it is shown that

ωk “ λest ` ηk´1, where ηk´1 is obtained from the last entry of the solution of the system

pTk´1 ´ λestIquk´1 “ β2
kek´1. (3.6)

To compute uk´1, we take the QR factorization of Tk´1 ´ λestI analogous to the LQ

factorization of HT
k´1 in SYMMLQ. This differs from (Orban and Arioli, 2017), where a

Cholesky factorization is used, but QR factorization allows us to solve an indefinite system

using a stable factorization. It begins with the 2ˆ2 reflection

«
c

pωq
1 s

pωq
1

s
pωq
1 ´c

pωq
1

ff «
α1 ´ λest β2

β2 α2 ´ λest β3

ff
“

«
ρ1 σ2 τ3

ρ̄2 σ̄3

ff
,

and proceeds with reflections defined by

»
–

j j ` 1

j c
pωq
j s

pωq
j

j ` 1 s
pωq
j ´c

pωq
j

fi
fl

«
j j ` 1 j ` 2

ρ̄j σ̄j`1

βj`1 αj`1 ´ λest βj`2

ff
“

«
j j ` 1 j ` 2

ρj σj`1 τj`2

ρ̄j`1 σ̄j`2

ff
.



14 CHAPTER 3. ERROR BOUNDS FOR SYMMLQ AND CG

Putting the QR factorization together, we have

Tk´1 ´ λestI “

»
————–

ˆ ˆ ¨ ¨ ¨ ˆ
ˆ ˆ ˆ

. . .
. . .

...

s
pωq
k´2 ´c

pωq
k´2

fi
ffiffiffiffifl

»
———————–

ρ1 σ2 τ3

ρ2 σ3

. . .

ρ3
. . . τk´1

. . . σk´1

ρ̄k´1

fi
ffiffiffiffiffiffiffifl
,

where ˆ is a placeholder for entries we are not interested in. We do not need to compute

the QR factorization fully as we require only the scalars s
pωq
k´2, c

pωq
k´2, and ρ̄k´1 at the kth

iteration. The relevant recurrence relations are

ρ̄1 “ α1 ´ λest,

σ̄2 “ β2, c
pωq
0 “ ´1,

ρ1 “
b
ρ̄21 ` β2

2 , c
pωq
1 “ α1 ´ λest

ρ1
, s

pωq
1 “ β2

ρ1
;

for k ě 2:

ρ̄k “ s
pωq
k´1σ̄k ´ c

pωq
k´1pαk ´ λestq,

σ̄k`1 “ ´c
pωq
k´1βk`1, τk “ s

pωq
k´2βk,

ρk “
b
ρ̄2k ` β2

k`1, c
pωq
k “ ρ̄k

ρk
, s

pωq
k “ βk`1

ρk
.

From the QR factorization of (3.6), we see that

»
———————–

ρ1 σ2 τ3

ρ2 σ3

. . .

ρ3
. . . τk´1

. . . σk´1

ρ̄k´1

fi
ffiffiffiffiffiffiffifl

»
———–

ˆ
...

ˆ
ηk´1

fi
ffiffiffifl “

»
————–

ˆ ˆ
ˆ ˆ . . .

...
. . . s

pωq
k´2

ˆ ¨ ¨ ¨ ¨ ¨ ¨ ´c
pωq
k´2

fi
ffiffiffiffifl
β2
kek´1 “

»
—————–

0
...

0

β2
ks

pωq
k´2

´β2
kc

pωq
k´2

fi
ffiffiffiffiffifl
,

and therefore ηk´1 “ ´β2
kc

pωq
k´2{ρ̄k´1, with ωk “ λest ` ηk´1.

We now describe how to compute β2
1e

T
1

rT´2
k e1 efficiently. Note that if we take the LQ

factorization of rTk “ rLk
rQk, then by symmetry of rTk,

β2
1e

T
1

rT´2
k e1 “ β2

1e
T
1

`rLk
rQk

˘´T `rLk
rQk

˘´1
e1

“ β2
1e

T
1

rL´T
k

rL´1
k e1 “ }β1

rL´1
k e1}2

“ }rzk}2, (3.7)

where rLkrzk “ β1e1. Because rTk differs from Tk only in the pk, kq entry, we have

rLk “
«

Lk´1 0

εke
T
k´2 ` ψke

T
k´1 ω̄k

ff
, where

«
ck sk
sk ´ck

ff «
δ̄k
ωk

ff
“

«
ψk

ω̄k

ff
,
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where εk comes from the LQ factorization of Tk. The vector rzk is closely related to zk.

Indeed Lk´1zk´1 “ β1e1, and therefore

rzk “
«
zk´1

rζk

ff
, rζk “ ´ 1

ω̄k
pεkζk´2 ` ψkζk´1q . (3.8)

Theorem 2.3 (with f defined in (3.5)) and (3.7) imply that }x‹}2 ď }rzk}2 so that (3.4) yields

}x‹ ´ xL
k }2 “ }x‹}2 ´ }xL

k }2 ď }rzk}2 ´ }zk´1}2 “ p�Lk q2, (3.9)

where we define

�Lk :“ |rζk|. (3.10)

Thus, with only a few extra floating-point operations per iteration we can compute an upper

bound �Lk on the SYMMLQ error in the Euclidean-norm.

Note that this approach can be applied when a positive definite preconditioner M « A is

used. The preconditioner changes the Lanczos decomposition, but all remaining computations

carry through as above. We obtain an estimate of the error in the norm defined by the

preconditioner, namely }x‹ ´ xk}M .

3.2.3 Upper bounds on the CG error

We now use the error bound derived in the previous section to obtain an upper bound on the

CG error in the Euclidean norm. We first establish that the CG error is always lower than

that of SYMMLQ for A positive semidefinite and Ax “ b consistent. Although the result

yields the trivial upper bound (3.10), it also allows us to identify an improved bound. Define

the kth CG direction as pk with step length αC
k ą 0, so that xC

k “ řk
j“1 α

C
j pj .

Lemma 3.2 The CG search directions satisfy pTi pj ě 0 for all i, j.

The following lemma is also useful in our analysis.

Lemma 3.3 For 1 ď k ď � and 0 ď d1 ď d2 ď � ´ k,

pxC
k`d2

qTxC
k ě pxC

k`d1
qTxC

k ě }xC
k }2, and in particular, px‹qTxC

k ě }xC
k }2.

Proof. Because αC
i ą 0, Lemma 3.2 yields

pxk`d2qTxC
k “

ˆ
xC
k `

k`d2ÿ

i“k`1

αC
i pi

˙T

xC
k “ }xC

k }2 `
k`d2ÿ

i“k`1

kÿ

j“1

αC
i α

C
j p

T
i pj

ě }xC
k }2 `

k`d1ÿ

i“k`1

kÿ

j“1

αC
i α

C
j p

T
i pj

ě }xC
k }2.

We now relate the Euclidean-norm errors of SYMMLQ and CG.

Theorem 3.4 Let A be positive semidefinite and Ax “ b be consistent and let x‹ be the

solution identified by both CG and SYMMLQ by virtue of Proposition 2.1. The following hold
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in exact arithmetic for all 2 ď k ď �:

}xL
k } ď }xC

k }, (3.11)

}x‹ ´ xC
k } ď }x‹ ´ xL

k }. (3.12)

Proof. Relation (3.11) follows from (3.3), and this with Lemma 3.3 implies that

}xL
k }2 ` }xC

k }2 ď 2}xC
k }2 ď 2px‹qTxC

k .

Rearranging and adding }x‹}2 to both sides gives

}x‹}2 ´ 2px‹qTxC
k ` }xC

k }2 ď }x‹}2 ´ }xL
k }2.

By factoring the left and using result 2 of Lemma 3.1 on the right, we obtain (3.12).

Although the proof of Theorem 3.4 assumes exact arithmetic, we have observed empirically

that the result holds until the error in xL
k plateaus at convergence.

Theorem 3.4 immediately establishes the trivial bound

}x‹ ´ xC
k } ď }x‹ ´ xL

k } ď �Lk , (3.13)

which provides an upper bound on the Euclidean-norm CG error, in contrast to the estimates

of Meurant (2005). We can improve bound (3.13) using a few observations.

From Lemma 3.3,

θk :“ px‹qTxC
k ´ }xC

k }2 ě 0. (3.14)

Hence from part (3.3)

}x‹ ´ xC
k }2 “ }x‹}2 ´ 2px‹qTxC

k ` }xC
k }2

“ }x‹}2 ´ 2θk ´ }xC
k }2

“ }x‹}2 ´ 2θk ´ }xL
k }2 ´ ζ̄2k ,

and since }x‹ ´ xL
k } ď �Lk “ |rζk| it follows that

}x‹ ´ xC
k }2 “ }x‹ ´ xL

k }2 ´ ζ̄2k ´ 2θk

ď rζ2k ´ ζ̄2k ´ 2θk (3.15)

ď rζ2k ´ ζ̄2k . (3.16)

Since ζ̄k is readily available as part of the SYMMLQ iteration, (3.16) is an improvement upon

the bound (3.13). Unfortunately, bound (3.15) is not computable because x‹ is unavailable.

We define

�Ck :“
b

rζ2k ´ ζ̄2k ď |rζk| “ �Lk (3.17)

as an upper bound on the error of the kth CG iterate.

Using Lemma 3.3, we could further improve the error estimate by approximating θk from

below by introducing a delay, implemented using the sliding-window approach originally

appearing in Golub and Strakǒs (1994) (stabilized by Golub and Meurant (1997) and used by
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Meurant (2005) and Orban and Arioli (2017)). Given Lemma 3.3, we define an approximation

of (3.14) as

θ
pdq
k :“ pxC

k`dqTxC
k ´ }xC

k }2 ď θk pd ą 0q,
noting that 0 ď θ

p1q
k ď ¨ ¨ ¨ ď θ

p�´kq
k “ θk.

We now describe how to compute θ
pdq
k without storing the iterates xC

k , . . . , x
C
k`d explicitly.

Recalling that xC
k “ xL

k ` ζ̄kw̄k “ řk´1
i“1 ζiwi ` ζ̄kw̄k, we have

θ
pdq
k “ `

xL
k ` ζ̄kw̄k

˘T `
xL
k`d ` ζ̄k`dw̄k`d

˘ ´ `}xL
k }2 ` ζ̄2k

˘

“ }xL
k }2 ` ζ̄kw̄

T
k x

L
k`d ` ζ̄k ζ̄k`dw̄

T
k w̄k`d ´ `}xL

k }2 ` ζ̄2k
˘

“ ζ̄k

k`d´1ÿ

i“k

ζiw̄
T
k wi ` ζ̄k ζ̄k`dw̄

T
k w̄k`d ´ ζ̄2k ,

where we use the fact that wT
i wj “ 0 for i ‰ j and w̄T

i wj “ 0 for j ă i. Note that

w̄T
k wi “ ci`1

iź

j“k`1

sj and w̄T
k w̄i “

iź

j“k`1

sj for i ě k,

so that

θ
pdq
k “ ζ̄k

k`d´1ÿ

i“k

˜
ζici`1

iź

j“k`1

sj

¸
` ζ̄k ζ̄k`d

k`dź

j“k`1

sj ´ ζ̄2k .

We can compute θ
pdq
k in Opdq flops and Opdq storage by maintaining d partial products of

the form
śi

j“k`1 sj for k ` 1 ď i ď k ` d. At the next iteration we can divide each partial

product by sk`1 and multiply the last one by sk`d to obtain the necessary partial products

for iteration k ` 1.

With the above expression we can improve (3.16) to

}x‹ ´ xC
k }2 ď `

�Ck
˘2 ´ 2θ

pdq
k . (3.18)

This improved bound is only noticeable when λest is a close estimate to λmin. Otherwise,

the difference between the �Ck and }x‹ ´ xC
k } is dominated by the error in the Gauss-Radau

quadrature (the difference between �Lk and }x‹ ´ xL
k }).

It is not necessary to implement CG via the transfer point from SYMMLQ in order to

compute these error bounds because only tαk,βku from the Lanczos process are required.

These can be recovered from the classic Hestenes and Stiefel (1952) implementation of CG

using equations provided by Meurant (2005).

For positive semidefinite A, we have derived upper bounds on the SYMMLQ and CG

errors when Ax “ b is consistent. Only a few extra scalar operations are needed per iteration,

and Op1q extra memory.

3.3 Complete algorithm

Algorithm 3 provides the complete algorithm to compute the error bounds �Lk and �Ck , given

tαk,βku from the Lanczos process. Although it did not make a difference in our numerical
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Algorithm 3 SYMMLQ with CG error estimation

Require: A, b, and λest such that λest ă λminpAq.
1: Obtain α1,β1,β2 of Lanzcos process on pA, bq
2: γ̄1 “ α1, δ̄2 “ β2, ε1 “ ε2 “ 0 Ź begin QR of L̄k

3: ρ̄1 “ α1 ´ λest, σ̄2 “ β2, ρ1 “ a
ρ̄21 ` β2

2 Ź begin QR of (3.6)

4: c
pωq
0 “ ´1, c

pωq
1 “ pα1 ´ λestq{ρ1, spωq

1 “ β2{ρ1
5: ζ0 “ 0, ζ̄1 “ β1{γ̄1 Ź initialize remaining variables
6: for k “ 2, 3, . . . do

7: γk´1 “
b
γ̄2
k´1 ` β2

k

8: ck “ γ̄k´1{γk´1, sk “ βk{γk´1

9: Obtain αk,βk`1 from Lanczos process on pA, bq
10: δk “ δ̄kck ` αksk, γ̄k “ δ̄ksk ´ αkck Ź continue QR of L̄k

11: εk`1 “ βk`1sk, δ̄k`1 “ ´βk`1ck
12: ζk´1 “ ζ̄k´1ck Ź forward substitution
13: ζ̄k “ ´pεkζk´2 ` δkζk´1q{γ̄k
14: ηk´1 “ ´β2

kc
pωq
k´2{ρ̄k´1 Ź forward substitution on (3.6)

15: ωk “ λest ` ηk´1

16: ψk “ ck δ̄k ` skωk, ω̄k “ sk δ̄k ´ ckωk

17: �Lk “ |pεkζk´2 ` ψkζk´1q{ω̄k| Ź compute error bounds

18: �Ck “ `p�Lk q2 ´ ζ̄2k
˘ 1

2

19: ρ̄k “ s
pωq
k´1σ̄k ´ c

pωq
k´1pαk ´ λestq Ź continue QR of (3.6)

20: σ̄k`1 “ ´c
pωq
k´1βk`1, ρk “

b
ρ̄2k ` β2

k`1

21: c
pωq
k “ ρ̄k{ρk, spωq

k “ βk`1{ρk
22: end for

experiments, it may be safer in practice to compute reflections c
pωq
k , s

pωq
k , ck, sk using a variant

of (Golub and Van Loan, 2013, §5.1.8).

3.4 Error estimation with A indefinite

We now focus on the SYMMLQ error when A is indefinite. Theorem 2.3 no longer applies,

and so β2
1e

T
1

rT´2
k e1 is only an estimate of }x‹} rather than an upper bound.

There are two approaches. The first is to continue as in Section 3.2.2 and accept

�Lk as an estimate of the error rather than an upper bound. Alternatively we can treat

}x‹}2 “ bTpA2q:b as a quadratic form in A2 rather than A. (Recall that for real symmetric A,

pA2q: “ pA:q2.) We formulate the problem as upper bounding the energy norm }x‹} “ }b}B:

with B “ A2. Such computation is akin to computing the energy norm error for CG using

Gauss-Radau quadrature, which has been studied by Golub and Meurant (1997) and others.

The main difficulty is that it requires applying the Lanczos process to A2 and b, which means

two applications of A per iteration of SYMMLQ (an impractical requirement in general).

Although this theoretically guarantees that we obtain an upper bound on }x‹} (and therefore

an upper bound on the error), roundoff error can diminish the quality of the estimation.

With these ideas in mind, we consider the procedure outlined in Section 3.2.2, treating

bTpA2q:b as a quadratic form in A to estimate the error. In numerical experiments we observe

that the estimate often remains an upper bound, even as the iterates converge to the solution.
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It is possible to loosen the error estimate by choosing a smaller value for λest to encourage

the estimate to remain an upper bound; however, without knowing λ| min |, this may not be

a practical solution. This is also illustrated in the numerical experiments.

Note that with A indefinite, λest should be chosen between zero and the eigenvalue closest

to zero (keeping the sign of that eigenvalue). This is the only difference in the computation

of �Lk . There may be iterations where Tk´1 ´ λestI becomes singular, and it may not be

possible to compute �Lk for that iteration, but the QR factorization of Tk ´ λestI could still

remain computable at future iterations.

3.5 The choice of λest

A reasonably tight underestimate of λest is required for approaches using Gauss-Radau

quadrature, such as for other error estimates proposed by Meurant (1997) and Frommer

et al. (2013). The quality of our error bounds is directly dependent on the quality of the

Gauss-Radau quadrature, which in turn depends on the quality of the eigenvalue estimate.

Meurant and Tichý (2015) investigated the effect of λest on the quality of Gauss-Radau

quadrature for the CG A-norm error.

If λ|min| :“ argminλPΛpAq |λ| is known, one should choose λest “ p1 ´ �qλ|min| with � ! 1.

In the experiments below, we usually use � “ 10´10. Choosing λest slightly closer to zero

alleviates numerical stability issues in computing ωk with a near-singular Tk ´ λestI. This

also applies when A is indefinite.

One example where it is trivial to obtain an underestimate of the smallest eigenvalue is

for shifted linear systems pA ` δIqx “ b with A SPD and δ ą 0, where the choice λest “ δ

may give good error estimates if A is close to singularity. This is of interest for regularized

least-squares problems pATA ` δ2Iqx “ ATb (this is further explored in Chapter 4).

When λ|min| is not known, the choice of λest becomes application-specific. It may be

possible to estimate the smallest eigenvalue as the iterations progress, similar to Frommer

et al. (2013), although this is the subject of ongoing research. If no information is known

about the spectrum of A, Gauss-Radau quadrature approaches such as the one presented in

this chapter may not be practical.

3.6 Previous error estimates

As discussed in Section 3.2.1, there are other approaches to estimating the error in the

iterates of Krylov subspace methods, particularly for CG. In this section we provide a brief

overview of the approaches taken by Brezinski (1999), Meurant (2005), and Frommer et al.

(2013) as applied to CG, followed by some numerical experiments comparing the approaches.

Only the error estimate by Brezinski (1999) applies to SYMMLQ as well. We include this in

the numerical experiments.

Brezinski (1999) describes several error estimates for nonsingular square systems, including

}x‹ ´ xk} « }rk}2
}Ark} , rk “ b ´ Axk (3.19)
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Table 3.1: Cost of computing an error estimate for CG using various methods, where d is the
window size for methods using a delay (denoted by ˚). The right column refers to whether
the method guarantees an upper bound in exact arithmetic.

Cost per iteration Storage Upper bound

Brezinski (1999) Opn ` nnzpAqq Op1q Yes, if scaled by κpAq
Meurant (2005)˚ Op1q Opdq No
Frommer et al. (2013)˚ Opd2q Opdq Yes
Bound (3.17) Op1q Op1q Yes
Bound (3.18)˚ Opdq Opdq Yes

(see also Auchmuty (1992)). This estimate is simple to implement, but requires an extra

product Ark each iteration (note that }rk} is cheap to compute as part of the CG and

SYMMLQ iterations). The estimate can be made into an upper bound by multiplying it by

the condition number of A, or an upper bound thereof, assuming the latter is known ahead

of time, although this considerably loosens the estimate. Thus, such conversion to an upper

bound is only possible when A is nonsingular.

Meurant (2005) uses the relation

}x‹ ´ xC
k }2 “ }b}2 `

eT1 T
´2
n e1 ´ eT1 T

´2
k e1

˘ ` p´1qkβk`1}x‹ ´ xC
k }2A

}b}
}rCk }e

T
k T

´2
k e1 (3.20)

to relate the A-norm error to that of the Euclidean error for CG iterates. The first term

can be approximated by introducing a delay d and replacing eT1 T
´2
n e1 by eT1 T

´2
k`de1. The

A-norm error can be estimated via Gauss quadrature as described by Golub and Meurant

(1997), and the remaining terms by updating a QR factorization of Tk, so that the total cost

is only Op1q flops per iteration.

Frommer et al. (2013) use the fact that rCk “ }rCk }vk`1, where vk`1 is the pk ` 1qth
Lanczos vector, and so

}x‹ ´ xC
k }2 “ }rCk }2vTk`1A

´2vk`1. (3.21)

The right-hand side of (3.21) is upper-bounded using Gauss-Radau quadrature. Rather than

restarting the Lanczos process on A using vk`1 as the initial vector at each CG iteration, they

cleverly perform the Lanczos process on the lower 2dˆ 2d submatrix of Tk`d`1 using ed`1 as

the starting vector, thus recovering the same estimate. The restarted Lanczos factorization

requires Opd2q flops at each iteration.

In Table 3.1 we summarize the costs of the various error estimates for CG and say whether

the estimate can be shown to be an upper bound in exact arithmetic.

3.7 Numerical experiments

3.7.1 Comparison with previous estimates

We give some numerical examples comparing the various error estimation procedures for CG

and SYMMLQ, using SPD matrices from the SuiteSparse Matrix Collection (Davis and Hu,

2011) and Matlab implementations of all error estimates described in Section 3.6. In each
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Figure 3.1: �k{}x‹ ´ xk} for SPD system UTEP/Dubcova1 using SYMMLQ and CG, where
�k is the error bound for either SYMMLQ or CG.

(a) d “ 10 (b) d “ 100

Figure 3.2: �Ck {}x‹ ´ xC
k } for SPD system Nasa/nasa4704. Delays d “ 10 and 100 are used

for estimates that take advantage of them.

experiment, we use b “ �{?
n and compute x‹ “ Azb via Matlab. The solvers terminate when

}rk}{}b} ď 10´10. For estimates using a delay d, we report the estimated error at iteration k

using information obtained during iterations k, k ` 1, . . . , k ` d. Estimates requiring bounds

on eigenvalues use p1 ´ 10´10qλminpAq for the lower bound and p1 ` 10´10qλmaxpAq for the

upper bound. (Further experiments in Section 3.7.2 use a less accurate estimate of λminpAq.)
For each approach to estimating the error, we plot �{}x‹ ´ xk}, that is, the ratio of the

estimate, �, to the true error.

First we compare our SYMMLQ error estimate with that of Brezinski (1999). We use

the matrix UTEP/Dubcova1 (n “ 16, 129 and κpAq « 103). The ratio of the true error to

the corresponding bounds are plotted in Fig. 3.1a. We see that our bound is close to the

true error until xL
k attains its maximum accuracy, whereas the Brezinski (1999) estimate is a

lower bound on the error for the examples in this section; however if it is scaled by κpAq
then it becomes a loose upper bound.

We now compare the estimates for CG from (3.17) and (3.18) using a well-conditioned

system (UTEP/Dubcova1) and an ill-conditioned system (Nasa/nasa4704, n “ 4704 and
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κpAq « 107). In Fig. 3.1b, we see that all estimates do fairly well, as they are off by at most

one or two orders of magnitude. Estimate (3.17) performs nearly as well as those of Meurant

(2005) and Frommer et al. (2013) when d “ 10, until a divergence occurs near iteration 70.

The improved estimate (3.18) appears tightest until that same divergence occurs.

Next, we compare against the estimates of Meurant (2005) and Frommer et al. (2013) on

Nasa/nasa4704 using d “ 10 in Fig. 3.2a and d “ 100 in Fig. 3.2b. We see that for d “ 10,

the (Meurant, 2005) estimate is not an upper bound, while that of Frommer et al. (2013) is

looser than ours. The situation is improved for the other estimates with d “ 100, where (3.17)

and those of (Meurant, 2005; Frommer et al., 2013) are fairly similar, but the Meurant (2005)

estimate is still not an upper bound, and the estimate of Frommer et al. (2013) is more costly

for such d. We also note that in this case, increasing d does not noticeably improve (3.18)

compared to (3.17).

For CG, (3.17) is the cheapest and in exact arithmetic is guaranteed to be an upper bound.

At the same time, it is not necessarily the tightest estimate, and the estimate of Frommer

et al. (2013) has the advantage of improved accuracy of the error estimate with increased

window size d (moreso than (3.18)), although at a higher computational cost and it requires

computing d iterations into the future. In some cases, such as Fig. 3.2a, a good estimate

that is not guaranteed to be a bound may more useful, but without accuracy guarantees it

may be difficult to use such estimates within termination criteria.

3.7.2 Additional SPD experiments

We evaluate the quality of our error bounds (3.10), (3.17) and (3.18) on further SPD

examples from the SuiteSparse collection. Again we solve Ax “ b with b “ �{?
n, taking

x‹ “ Azb from Matlab and terminating when }rk}{}b} ď 10´10. We compute λ|min|pAq, the
eigenvalue closest to zero, and obtain the error bounds using λest “ µλ|min|pAq, typically
with µ “ 1´10´10 or 0.1. We also include a lower-bound error estimate using a delay (Golub

and Strakǒs, 1994; Hestenes and Stiefel, 1952). Because SYMMLQ takes orthogonal steps,

}xL
k`d ´ xL

k }2 “
k`d´1ÿ

i“k

ζ2i ď
�ÿ

i“k

ζ2i “ }x‹ ´ xL
k }2 (3.22)

for any d ě 1. By choosing a modest value d “ 5 or 10 and storing the last d steplengths ζi,

we can compute a lower bound on the error. Note that we can compute a lower bound via

Gauss and Gauss-Radau quadrature with λest ě }A}2. Such techniques were used by Arioli

(2013), and provide lower bounds comparable to those using a delay. We plot �{}x‹ ´ xk} to

investigate the tightness of the bounds.

In the figure legends, �Lk pµq and �Ck pµq denote error bounds for SYMMLQ and CG obtained

from Gauss-Radau quadrature when λest “ µλ|min|pAq, where 0 ă µ ă 1. For SYMMLQ we

include the lower-bound error obtained using a delay with d ą 1, denoted by �Lk pdq.
For SYMMLQ on Bindel/ted B unscaled (n “ 10605 and κpAq « 1011), the bound to error

ratios are shown in Figure 3.3a. For GHS psdef/wathen100 (n “ 30401 and κpAq « 103),

they are in Fig. 3.3b. When λest approximates λ|min| “ λr well, the bound �Lk is remarkably

tight after an initial lag. We used µ “ 1 ´ 10´6 for the first problem due to A being

ill-conditioned (λ| min | « 10´11), and µ “ 1 ´ 10´10 for the second problem. Even when λest

is a tenth of the true eigenvalue, it appears that the bound is at most an order of magnitude
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Figure 3.3: �Lk p¨q{}x‹ ´ xL
k } for two SPD systems. The Gauss-Radau approach gives upper

bounds, while the delay gives lower bounds.
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Figure 3.4: �Ck pµq{}x‹ ´ xC
k } for two SPD systems.

larger, still outlining the true error from above. Only near convergence, �Lk may no longer be

a bound when the true error plateaus. Having the computed bound continue to decrease

after convergence is a desirable property for termination criteria. The lower bounds �Lk pdq
oscillate an order of magnitude below the true error in Fig. 3.3a, but in Fig. 3.3b, both upper

and lower bounds soon approximate the true error to within a couple orders of magnitude.

We now solve the same problems using CG. Fig. 3.4 shows that �Ck is a considerably

looser bound on the CG error than �Lk is on the SYMMLQ error, although both remain true

upper bounds until convergence. As with SYMMLQ, if the error stagnates at convergence,

the “bound” may continue to decrease. We see that increasing d in (3.18) (when using an

accurate estimate of the smallest eigenvalue) improves the bound when A is reasonably

conditioned, but does not have a large impact for ill-conditioned problems. Also, �Ck diverges

slightly from the true CG error when the error is roughly the square-root of the maximum

attainable accuracy; in particular, d has nearly no noticeable effect past that point. This is

probably due to ζ̄k becoming an order of magnitude smaller than �Lk .
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(c) SYMMLQ on Bindel/ted B unscaled
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Figure 3.5: �kpµq{}xk ´ x‹} when running SYMMLQ and CG on two SPD problems for using
various values of λest “ µλ| min |.

3.7.3 Empirical check

To check whether the error bounds behave as upper bounds numerically, we ran SYMMLQ

and CG on all SuiteSparse matrices of size n ď 25000 with κpAq ă 1016, resulting in 140

problems. The results are in Appendix B. We used b “ �{?
n and λest “ p1 ´ 10´10qλmin or

0.1λmin, and terminated when the estimate �Lk , �
C
k ď 10´10. We then counted the number of

iterations where �Lk ě }x‹ ´xL
k } and �Ck ě }x‹ ´xC

k } were satisfied. For λest “ p1´10´10qλmin

(0.1λmin), 121 (129) problems had �Lk and �Ck behave as upper bounds for all iterations, while

for the remaining 19 (11) problems we saw a cross-over at convergence similar to Fig. 3.3b,

with �Lk and �Ck continuing to decrease once the true error plateaued. Thus empirically our

bounds do behave as upper bounds until convergence.

3.7.4 Effect of λest

We briefly investigate the effect of λest on the tightness of the error bounds (3.10) and (3.17).

We use problems UTEP/Dubcova1 and Bindel/ted B unscaled again as examples of well-

and ill-conditioned systems.

We observe in Figs. 3.5a and 3.5c that for SYMMLQ, �Lk pµq{}x‹ ´ xL
k } « µ´1 after an

initial lag. In the case of Bindel/ted B unscaled, an instability occurs for µ “ 1 ´ 10´10

because the smallest eigenvalue is λ| min | « 10´11. The instability is remedied by using a
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Figure 3.6: �Lk pµq{}x‹ ´xL
k } for two indefinite systems. The Gauss-Radau approach no longer

guarantees an upper bound, but works in some problems. The delay continues to provide a
lower bound.

slightly larger µ “ 1 ´ 10´4, resulting in an almost identical bound without the instability.

For CG in Figs. 3.5b and 3.5d, we also notice that for µ ď 0.1, the bound loosens by a

factor of µ but keeps the same shape. The exception is when µ « 1, where the bound is fairly

tight until a divergence occurs and the bound nearly overlaps with the curve for µ “ 0.1.

The closer µ is to 1, the later this divergence occurs; however when λ| min | is very small (as

in Fig. 3.5d), this may result in numerically unstable computations. This is because we

are implicitly solving against the shifted system Tk ´ λestI to compute the bound, which

becomes singular as λest approaches λ|min|. Similar instabilities for CG A-norm error bounds

were observed in Meurant and Tichý (2015) when the true error approaches the square root

of machine precision.

3.7.5 Indefinite A

We now consider indefinite examples PARSEC/Na5 and HB/lshp3025 (n “ 5822 and 3025,

κpAq « 103 and 104). The former contains few negative eigenvalues, while for the latter,

nearly half of its spectrum is negative. Fig. 3.6a shows that with the negative eigenvalue,

(3.10) is no longer a bound for all iterations, and behaves only as an estimate which often

dips below the true error. However, for many problems, such as for HB/lshp3025 in Fig. 3.6b,

we see that the error estimate using λ|min| remains an upper bound (until convergence) and

tracks the true error to nearly an order of magnitude. Underestimation of λ|min| loosens the
bound, but in the case of both problems here, keeps (3.10) an upper bound to the true error,

although this is again heuristic.

3.8 Finite-precision and termination considerations

We must remember that the previous sections assumed exact arithmetic, including global

preservation of orthogonality of the columns of Vk. The question arises whether �Lk (3.13)

and �Ck (3.17) remain upper bounds in finite precision. A rounding-error analysis is needed,

similar to that of Strakoš and Tichý (2002) for CG A-norm error lower bounds, but this

remains for future work. The rigorous analysis of Golub and Strakǒs (1994) shows that
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Gauss-Radau quadrature may not yield upper bounds in finite precision, yet its use in

finite-precision computation remains justified. In all of our numerical experiments with

positive semidefinite A, we have observed that the computed �Lk and �Ck are indeed upper

bounds on the errors in xL
k and xC

k until convergence. It may therefore be possible to derive

the error bounds in this paper only using assumptions of local orthogonality in the CG and

Lanczos algorithms.

For positive semidefinite A, we have seen in practice that if λest is close to λr, the error

bounds are remarkably tight. Heuristically, we observe that when λest is loose, |λr|{|λest| «
�Lk {}x‹ ´xL

k }. It was shown in Sections 3.7.2–3.7.3 that the error estimate is an upper bound

until convergence, after which the true error may plateau but �Ck and �Lk continue to decrease.

This property makes it possible to terminate the iterations as soon as �Lk or �Ck drops below

a prescribed level.

For CG with positive semidefinite A, we have seen that �Ck is typically one or two orders of

magnitude larger than the true error for reasonable choices of λest. Using the �Ck termination

criterion will ensure that the error satisfies some tolerance, but CG may take a few more

iterations than necessary to achieve that tolerance.

For SYMMLQ with indefinite A, although �Lk is not guaranteed to upper bound the error,

it still acts as a useful estimate of the error. Since �Lk may diverge from the exact values, if

one additionally monitors the residual it would not be difficult to tell if �Lk is erroneously

approaching zero. Since �Lk tends to upper bound the error near convergence, it can still

be used in conjunction with other termination criteria involving the residual and related

quantities, to obtain solutions that probably satisfy a given error tolerance.



Chapter 4

LSLQ: An iterative method for linear

least-squares problems

We propose the iterative method LSLQ for solving least-squares problems (LS):

min
xPRn

1
2}Ax ´ b}2.

LSLQ can also handle linear systems (L) and least-norm problems (LN) as special cases. We

often refer to the optimality conditions of (LS), namely the normal equations

ATAx “ ATb. (NE-LS)

When Ax “ b is consistent, LSLQ identifies a solution of (LN). If rankpAq ă n, LSLQ finds

the minimum-length solution (MLS) x‹ “ A:b, where A: is the pseudoinverse.

This chapter is based on (Estrin et al., 2019c).

4.1 Motivation

van Leeuwen and Herrmann (2016) describe a penalty method for PDE-constrained opti-

mization in the context of a seismic inverse problem. The penalty objective φρpz, uq depends

on control variable z and wavefields u, where ρ ą 0 is a penalty parameter. For fixed values

of ρ and z, the wavefields upzq satisfying ∇uφρpz, upzqq “ 0 can be found as the solution of

a linear least-squares (LS) problem in u. The gradient of φ with respect to z is subsequently

expressed as a linear function of upzq, say

∇zφρpz, upzqq “ Gupzq ´ g

for a certain matrix G and vector g. Assume now that an inexact solution ru of the LS

problem for upzq is determined. The error in u translates directly into an error in the gradient

of the penalty function, for

}∇zφρpz, uq ´ ∇zφρpz, ruq} ď α }u ´ ru} ` β }u ´ ru}2, u ” upzq, (4.1)

for certain positive constants α and β. If a derivative-based optimization method is to be

used to minimize the penalty function, there is interest in a method to approximate u in

which the error is monotonically decreasing. Indeed, the convergence properties of derivative-

based optimization methods are not altered provided the gradient is computed sufficiently

accurately in the sense that the left-hand side of (4.1) is sufficiently small compared to

}∇zφρpz, uq} (Conn, Gould, and Toint, 2000, §8.4.1.1).
We comment on the necessity for LSLQ in order to monitor the error reliably. It is

27
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Figure 4.1: Error along the LSQR, LSMR and LSLQ iterations on problems small and small2
from the animal breeding set. The red curve corresponds to the LSQR iterates generated
as a by-product during the LSLQ iterations. The horizontal axis represents the number of
iterations (each involving a product with A and a product with AT ).

sufficient to say that LSLQ applied to problem (LS) is equivalent to SYMMLQ (Paige and

Saunders, 1975) applied to (NE-LS). The key advantage that LSLQ inherits from SYMMLQ

is that the solution estimate is updated along orthogonal directions. As a consequence,

the solution norm increases and the error decreases along the iterations. It happens that

both LSQR and LSMR share those properties (Fong and Saunders, 2011, Table 5.2) but

with important differences. First, LSLQ’s orthogonal updates suggest error lower and upper

bounds initially developed for SYMMLQ in Chapter 3, and which are the subject of Section 4.4.

Second, the error is minimized in LSLQ, while it is only monotonic in LSQR and LSMR. In

spite of the latter observation, the error along the LSQR and LSMR iterations is typically

smaller than for the LSLQ iterations—see Proposition 4.1. This is not a contradiction because

LSLQ minimizes the error in a transformation of the Krylov subspace. Figure 4.1 illustrates a

typical scenario, where the error is represented along the LSQR, LSMR, and LSLQ iterations

on two over-determined problems arising from an animal breeding application (Hegland,

1990, 1993), and where we consider that the solution obtained with a complete orthogonal

decomposition is the exact solution.

Our main objective is to exploit the reliable lower and upper bounds on the LSLQ error

based on those developed for SYMMLQ in Chapter 3. The upper bound on the LSLQ errors

combined with the tight relationship between LSLQ and LSQR leads to an upper bound on

the LSQR error. Thus it becomes possible to end the LSLQ iterations as soon as it becomes

apparent that the upper bound on the LSQR error is below a prescribed tolerance.

Both problems used in Figure 4.1 are rank-deficient and the curves indicate that all

methods tested identify the MLS solution. Problem small2 is included in the illustration

because it is an example where the error plateaus. We return to this point in section 4.4.

We do not consider LSMR further for two reasons. First, it is a consequence of (Hestenes

and Stiefel, 1952, Theorem 7:5) that the LSMR error is monotonic and at least as large as

that of LSQR—see also (Fong and Saunders, 2011, Theorem 2.4). Second, LSMR is a variant

of MINRES (Paige and Saunders, 1975) and we know of no result relating the errors along

the MINRES iterations on an SPD system to those along the SYMMLQ iterations.
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4.2 Derivation

LSLQ is based on the Golub and Kahan (1965) process (Algorithm 2) from which we derive

our notation. By definition, LSLQ applied to (LS) is equivalent to SYMMLQ (Paige and

Saunders, 1975) applied to (NE-LS). From (2.12a) we have

ATAVk “ Vk`1L
T
k`1Bk “ Vk`1Hk, (4.2)

where

Hk :“
«

BT
k Bk

αk`1βk`1e
T
k

ff
, (4.3)

while lines 1 and 2 of Algorithm 2 yield ATb “ α1β1v1. From here on in this chapter, we use

the shorthand

ᾱk :“ α2
k ` β2

k`1, and β̄k :“ αkβk, k “ 1, 2, . . . (4.4)

As noted by Fong and Saunders (2011) and Section 2.2, the above characterizes the situation

after k ` 1 steps of the Lanczos (1950) process applied to ATA with initial vector ATb. For

all k ě 1, we denote

Tk :“ BT
k Bk “

»
—————–

ᾱ1 β̄2

β̄2 ᾱ2
. . .

. . .
. . . β̄k

β̄k ᾱk

fi
ffiffiffiffiffifl
, Hk “

«
Tk

β̄k`1e
T
k

ff
. (4.5)

The k-th iteration of CG applied to (NE-LS) computes xC
k “ Vkx̄

C
k , where x̄C

k is the

solution of the subproblem

Tkx̄
C
k “ β̄1e1. (4.6)

The resulting xC
k can be shown to solve the subproblem

minimize
xPKk

}x‹ ´ x}ATA, (4.7)

where Kk :“ spantATb, pATAqATb, . . . , pATAqkATbu is the k-th Krylov subspace associated

with ATA and ATb. LSQR (Paige and Saunders, 1982a,b) is equivalent in exact arithmetic.

The k-th iteration of SYMMLQ applied to (NE-LS) computes yLk as the solution of

minimize 1
2}yLk }2 subject to HT

k´1x̄
L
k “ β̄1e1, (4.8)

and sets xL
k :“ Vkx̄

L
k . Note that HT

k´1 is the first k ´ 1 rows of Tk and may be written as

HT
k´1 “ BT

k´1Lk. Comparing to (2.9), we see that xL
k solves the subproblem

minimize
xPATAKk´1

}x‹ ´ x}. (4.9)

One important distinction between (4.7) and (4.9) is that xC
k P Kk while xL

k P pATAqKk´1,

a subset of Kk. By construction, }x‹ ´ xk} is monotonic along the LSLQ iterates, but as

mentioned earlier, it also happens to be monotonic along the LSQR iterates. A corollary of
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Theorem 3.4 is that the LSQR error is always smaller than the LSLQ error.

Proposition 4.1 Let xC
k “ Vkx̄

C
k and xL

k “ Vkx̄
L
k with x̄C

k and x̄L
k defined as in (4.6)

and (4.8). Then, for all k,

}xL
k } ď }xC

k },
}x‹ ´ xC

k } ď }x‹ ´ xL
k }.

Note first that Proposition 4.1 holds whether A has full column rank or not. Note also

that Proposition 4.1 does not contradict the definition of LSLQ as minimizing the error

because the latter is not minimized over the same subspace as that used during the k-th

iteration of LSQR.

In the next section we describe the implementation of LSLQ, and we return to the two

errors in section 4.4.

4.2.1 LSLQ: implementation

We identify yLk by way of an LQ factorization of HT
k´1 (as in Section 3.1), which we compute

via an implicit LQ factorization of Tk “ BT
k Bk. As in LSQR and LSMR we begin with the

QR factorization

PT
k

”
Bk β1e1

ı
“

«
Rk gk
0 ψ1

k`1

ff
, Rk :“

»
—————–

γ1 δ2

γ2
. . .

. . . δk
γk

fi
ffiffiffiffiffifl
, gk “

»
—–
ψ1

...

ψk

fi
ffifl , (4.10)

where PT
k “ Pk,k`1 . . . P2,3P1,2 is a product of orthogonal reflections. The j-th reflection

Pj,j`1 is designed to zero out the sub-diagonal element βj`1 in Bk. With γ̄1 :“ α1 it may

be represented as

« j j ` 1

j c1
j s1

j

j ` 1 s1
j ´c1

j

ff « j j ` 1

γ̄j
βj`1 αj`1

ff
“

« j j ` 1

γj δj`1

γ̄j`1

ff
, (4.11)

where γj “ pγ̄2
j ` β2

j`1q 1
2 , c1

j “ γ̄j{γj , s1
j “ βj`1{γj , and

δj`1 “ s1
jαj`1,

γ̄j`1 “ ´c1
jαj`1.

(4.12)

The rotations apply to the right-hand side β1e1 to produce gk defined by the recurrence

ψ1
1 “ β1, ψk “ c1

kψ
1
k, ψ1

k`1 “ s1
kψ

1
k, k “ 1, 2, . . . (4.13)

It will be convenient to use the notation g1
k`1 “ pgk,ψ1

k`1q.
The QR factors of Bk give the Cholesky factorization Tk “ RT

k Rk. To form LQ factors
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of Tk we take the LQ factorization

Rk “ ĎMkQk, ĎMk :“

»
————–

ε1
η2 ε2

. . .
. . .

ηk ε̄k

fi
ffiffiffiffifl
. (4.14)

Initially, ε̄1 “ γ1 so that R1 “ ĎM1. We use the notation of Paige and Saunders (1975) to

indicate that ĎMk differs from the leading k-by-k submatrix Mk of ĎMk`1 in the pk, kq-th
element only, which is updated to εk once δk`1 “ αk`1βk`1{γk is computed. This results in

the plane reflection Qk,k`1 defined by

« k k ` 1

k ε̄k δk`1

k ` 1 γk`1

ff « k k ` 1

ck sk
sk ´ck

ff
“

« k k ` 1

εk
ηk`1 ε̄k`1

ff
, (4.15)

where εk “ pε̄2k ` δ2k`1q 1
2 , ck “ ε̄k{εk, sk “ δk`1{εk, and

ηk`1 “ γk`1sk,

ε̄k`1 “ ´γk`1ck.
(4.16)

Combining (4.10) and (4.14) gives

HT
k´1 “ BT

k´1Lk “
”
BT

k´1Bk´1 αkβkek´1

ı
“ RT

k´1

”
Rk´1 δkek´1

ı
.

By construction,

Rk “
«
Rk´1 δkek´1

γk

ff
“ ĎMkQk “

«
Mk´1 0

ηke
T
k´1 ε̄k

ff
Qk

and we obtain the LQ factorization

HT
k´1 “ RT

k´1

”
Mk´1 0

ı
Qk “

”
RT

k´1Mk´1 0
ı
Qk.

With the solution of HT
k´1x̄

L
k “ β̄1e1 in mind, we consider the system RT

k tk “ α1β1e1 and

obtain tk :“ pτ1, . . . , τkq by the recursion

τ1 :“ α1β1{γ1,
τj :“ ´τj´1δj{γj , j “ 2, . . . , k.

(4.17)

We also consider the systems Mk´1zk´1 “ tk´1 and ĎMkz̄k :“ tk and obtain zk´1 :“
pζ1,. . ., ζk´1q and z̄k “ pzk´1, ζ̄kq by the recursion

ζ1 “ τ1{ε1,
ζj “ pτj ´ ζj´1ηjq{εj , j “ 2, . . . , k ´ 1,

ζ̄k “ pτj ´ ζk´1ηkq{ε̄k “ ζk{ck.
(4.18)
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Then x̄L
k “ QT

k

«
zk´1

0

ff
solves (4.8), while x̄C

k “ QT
k z̄k solves (4.6).

Now let ĎWk :“ VkQ
T
k “

”
w1 . . . wk´1 swk

ı
“

”
Wk´1 swk

ı
. Starting with xL

1 :“ 0

and xC
0 :“ 0 we obtain

xL
k “ Vky

L
k “ VkQ

T
k

«
zk´1

0

ff
“ ĎWk

«
zk´1

0

ff
“ Wk´1zk´1 “ xL

k´1 ` ζk´1wk´1, (4.19)

xC
k “ VkQ

T
k z̄k “ ĎWkz̄k “ Wk´1zk´1 ` ζ̄k swk “ xL

k ` ζ̄k swk. (4.20)

Thus, as in SYMMLQ it is always possible to transfer to the LSQR point. In terms of error,

Proposition 4.1 indicates that transferring is always desirable.

At the next iteration we have ĎWk`1 “ Vk`1Q
T
k`1, where

”
swk vk`1

ı «
ck sk
sk ´ck

ff
“

”
wk swk`1

ı
.

With sw1 :“ v1 this gives

wk “ ck swk ` skvk`1, (4.21a)

swk`1 “ sk swk ´ ckvk`1. (4.21b)

Because the columns of Wk´1 and ĎWk are orthonormal in exact arithmetic, we have

}xL
k }2 “ }Wk´1zk´1}2 “ }zk´1}2 “

k´1ÿ

j“1

ζ2j “ }xL
k´1}2 ` ζ2k´1, (4.22)

}xC
k }2 “ }xL

k }2 ` ζ̄2k . (4.23)

4.2.2 Residual estimates

The k-th LSLQ residual is defined as rLk :“ b ´ AxL
k . We use the definition of xL

k “ Vkx̄
L
k ,

(2.11), (4.10) and (4.14) to express it as

rLk “ b ´ AVkx̄
L
k “ Uk`1

´
β1e1 ´ Bkx̄

L
k

¯

“ Uk`1Pk

˜
β1P

T
k e1 ´

«
Rk

0

ff
x̄L
k

¸

“ Uk`1Pk

˜
g1
k`1 ´

«
ĎMkQk

0

ff
x̄L
k

¸

“ Uk`1Pk

˜
g1
k`1 ´

«
ĎMk

0

ff «
zk´1

0

ff¸

“ Uk`1Pk

¨
˚̋
g1
k`1 ´

»
—–
Mk´1zk´1

ηkζk´1

0

fi
ffifl

˛
‹‚
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“ Uk`1Pk

¨
˚̋

»
—–
gk´1

ψk

ψ1
k`1

fi
ffifl ´

»
—–

tk´1

ηkζk´1

0

fi
ffifl

˛
‹‚,

where g1
k`1 is defined in (4.10) and (4.13). It is not immediately obvious that gk´1 “ tk´1,

but note that (4.10) yields
”
RT

k´1 0
ı
PT
k´1 “ BT

k´1, so that

RT
k´1gk´1 “

”
RT

k´1 0
ı «

gk´1

ψ1
k

ff
“ BT

k´1β1e1 “ α1β1e1 “ RT
k´1tk´1

as long as γk´1 ‰ 0. Therefore, if the process does not terminate, we have gk´1 “ tk´1 as

announced. By orthogonality of Uk`1 and Pk we have

}rLk }2 “

›››››››

»
—–

0

ψk ´ ηkζk´1

ψ1
k`1

fi
ffifl

›››››››

2

“ pψk ´ ηkζk´1q2 ` pψ1
k`1q2. (4.24)

The residual norm for the CG-point can also be computed as

rCk :“ b ´ AxC
k “ Uk`1Pk

˜
PT
k β1e1 ´

«
Rk

0

ff
x̄C
k

¸
“ Uk`1Pk

˜«
gk

ψ1
k`1

ff
´

«
Rk

0

ff
x̄C
k

¸
.

The top k rows of the parenthesized expression vanish by definition of x̄C
k , and there remains

}rCk } “ pβ1P
T
k e1qk`1 “ |ψ1

k`1|.

To derive recurrences for the residual norm for (NE-LS), we can use the recurrences

derived in (Paige and Saunders, 1975) for SYMMLQ and CG, which become

}AT rLk }2 “ pγk�kq2ζ2k ` pδkηk´1q2ζ2k´1,

}AT rCk } “ α1β1s1 ¨ ¨ ¨ sk´1sk{ck.

4.2.3 Norm and condition number estimates

Assuming orthonormality of Vk, (4.2) yields V T
k A

TAVk “ BT
k Bk, so that the Poincaré

separation theorem ensures σminpAq ď σminpBkq ď σmaxpBkq ď σmaxpAq for all k. Therefore

we may use }Bk} as an estimate of }A} and condpBkq as an estimate of condpAq in both the

Euclidean and Frobenius norms. In particular, }Bk`1}2F “ }Bk}2F ` α2
k ` β2

k`1.

As in (Fong and Saunders, 2011, Section 3.4), our approximation of condpAq rests on the

QLP factorization

PT
k BkQ

T
k “

«
Mk´1 0

ηke
T
k´1 �̄k

ff
.

According to Stewart (1999), the absolute values of the diagonals of the bidiagonal matrix

above are tight approximations to the singular values of Bk. Thus we estimate

σminpBkq « minp�1, . . . , �k´1, |�̄k|q, σmaxpBkq « maxp�1, . . . , �k´1, |�̄k|q,
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Algorithm 4 LSLQ

1: β1u1 “ b, α1v1 “ ATu1 Ź begin Golub-Kahan process
2: δ1 “ ´1, ψ1 “ β1 Ź initialize variables
3: τ0 “ α1β1, ζ0 “ 0
4: c0 “ 1, s0 “ 0
5: }AT rC0 } “ α1β1

6: sw1 “ v1, xL
1 “ 0

7: for k “ 1, 2, . . . do
8: βk`1uk`1 “ Avk ´ αkuk Ź continue Golub-Kahan process
9: αk`1vk`1 “ ATuk`1 ´ βk`1vk

10: γk “ pγ̄2
k ` β2

k`1q 1
2 , c1

k “ γ̄k{γk, s1
k “ β̄k`1{γk Ź continue QR factorization

11: δk`1 “ s1
kαk`1

12: γ̄k`1 “ ´c1
kαk`1

13: τk “ ´τk´1δk{γk
14: ε̄k “ ´γkck´1 Ź continue LQ factorization
15: ηk “ γksk´1

16: εk “ pε̄2k ` δ2k`1q 1
2 , ck “ ε̄k{εk, sk “ δk`1{εk

17: }rLk´1} “ ppψk´1c
1
k ´ ζk´1ηkq2 ` pψk´1s

1
kq2q 1

2

18: ψk “ ψk´1s
1
k

19: }rCk } “ ψk

20: ζk “ pτk ´ ζk´1ηkq{εk Ź optional: ζ̄k “ ζk{ck
21: }AT rLk } “ pγ2

k�
2
kζ

2
k ` δ2kη

2
kζ

2
k´1q 1

2 Ź optional: }AT rCk } “ }AT rCk´1}skck´1{ck
22: wk “ ckw̄k ` skvk`1

23: swk`1 “ sk swk ´ ckvk`1

24: xL
k`1 “ xL

k ` ζkwk Ź optional: xC
k “ xL

k ` ζ̄k swk

25: }xL
k`1}2 “ }xL

k }2 ` ζ2k Ź optional: }xC
k`1}2 “ }xC

k }2 ` ζ̄2k
26: end for

and condpAq « σmaxpBkq{σminpBkq, which turns out to be reasonably accurate in practice.

If ATb lies in a subspace spanned by few singular vectors of A, iterations will terminate early

and condpBkq will be an improving estimate of condpAV�q, where � is the last iteration.

4.3 Complete algorithm

The complete procedure is summarized as Algorithm 4. As in (Fong and Saunders, 2011,

Theorem 4.2), we can prove the following result using Proposition 2.1 applied to (NE-LS).

Theorem 4.2 LSLQ returns the MLS solution, i.e., it solves

min
xPRn

}x} subject to x P argmin
x̄

}Ax̄ ´ b}.

4.4 Error estimates

In exact arithmetic, a least-squares solution x‹ is identified after at most � ď minpm,nq
iterations, so that x‹ “ xL

�`1 “ ř�
j“1 ζjwj . Because xL

k “ řk´1
j“1 ζjwj , the error may be

written as eLk “ xL
�`1 ´ xL

k “ ř�
j“k ζjwj . By orthogonality, }eLk }2 “ ř�

j“k ζ
2
j . A possible
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stopping condition is

}xL
k`1 ´ xL

k´d}2 “
˜

kÿ

j“k´d

ζ2j

¸ 1
2

ď ε}xL
k`1} pk ą dq, (4.25)

where d P N is a delay and 0 ă ε ă 1 is a tolerance. The left-hand side of (4.25) is a lower

bound on the error }eLk´d}.
As we illustrate in section 4.6, (4.25) is not a robust stopping criterion because the lower

bound may sometimes underestimate the actual error by several orders of magnitude. In the

following sections, we develop a more robust estimate defined by an upper bound.

4.4.1 Upper bound on the LSLQ error

Chapter 3 develops an upper bound on the Euclidean error along SYMMLQ iterations for a

symmetric positive semidefinite system. The bound leads to an upper bound on the error

along CG iterations. We now translate those estimates to the present scenario and obtain

upper bounds on the error along LSLQ and LSQR iterations for (LS). We begin with an

upper bound on the LSLQ error.

By orthogonality, }x‹ ´ xL
k }2 “ }x‹}2 ´ }xL

k }2, and because }xL
k }2 can be computed, an

upper bound on the error will follow from an upper bound on }x‹}2. Assume temporarily

that m ě n and that A has full column rank, so that ATA is nonsingular. We may express

}x‹}2 “ bTApATAq´2ATb “ bTAfpATAqATb,

where fpξq :“ ξ´2 is defined for all ξ P p0, σ2
1s, and where we define fpATAq :“ PfpΣTΣqPT

with A “ QΣPT the SVD of A. In other words, if pi is the i-th column of P and σi is the

i-th largest singular value of A,

fpATAq “
nÿ

i“1

fpσ2
i qpipTi .

We have from line 2 of Algorithm 2 and (4.4) that ATb “ β̄1v1 and therefore

}x‹}2 “ β̄2
1

nÿ

i“1

fpσ2
i qµ2

i , µi :“ pTi v1, i “ 1, . . . , n.

When A is rank-deficient, ATA is positive semidefinite and singular, but (NE-LS) remains

consistent. In addition, the MLS solution of (LS) lies in rangepAT q. Let r be the smallest

integer in t1, . . . , nu such that σr`1 “ ¨ ¨ ¨ “ σn “ 0 and σr ą 0. Then rankpAq “ r “
dim rangepAT q and the smallest nonzero eigenvalue of ATA is σ2

r . By the Rayleigh-Ritz

theorem,

σ2
r “ min

�}Av}2 | v P rangepAT q, }v} “ 1
(
.

Note that each vi P rangepAT q and that (4.2) implies Tk “ V T
k ATAVk in exact arithmetic.

Hence, for all u P Rk with }u} “ 1, we have }Vku} “ 1 and uTTku “ }AVku}2 ě σ2
r ą 0, and

each Tk is uniformly positive definite, despite the fact that ATA is singular.

Thus, in the rank-deficient case, ATA “ řr
i“1 σ

2
i pip

T
i . The only difference with the
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full-rank case is that the sum occurs over all nonzero singular values of A. Therefore, we

need only redefine

fpξq :“
#
ξ´2 if x ą 0

0 if x “ 0.
(4.26)

Because each xL
k and each xC

k P rangepAT q, the LSLQ and LSQR iterations occur in

rangepAT q exactly as if they were applied to the r-by-r positive-definite system

PT
r ATAPrx̄ “ PT

r ATb,

where Pr “
”
p1 . . . pr

ı
and x‹ “ Prx̄. A consequence of the above discussion is that

}x‹}2 “ β̄2
1

rÿ

i“1

fpσ2
i qµ2

i , µi :“ pTi v1, i “ 1, . . . , n.

The problem is thus reduced to upper bounding a quadratic form as described in

Section 2.3.1 using Gauss-Radau quadrature. We begin with a paraphrase of Theorem 2.3.

Proposition 4.3 Suppose f : R Ñ R is such that f p2j`1qpξq ă 0 for all ξ P pσ2
r , σ

2
1q and

all j ě 0. Fix σest P p´σr, σrq, σest ‰ 0. Let Tk “ BT
kBk be the tridiagonal generated after

k steps of Algorithm 2 and �k P C be chosen so that the smallest eigenvalue of

rTk :“
«

Tk´1 β̄kek´1

β̄ke
T
k´1 α2

k ` �2
k

ff

is precisely σ2
est. Then,

bTAfpATAqATb ď β̄2
1e

T
1 fp rTkqe1.

Thus Proposition 4.3 applied to f defined in (4.26) provides an upper bound on }x‹}2.
Note that the Poincaré separation theorem ensures that the smallest eigenvalue of each

Tk´1 is at least σ2
r and that the Cauchy interlace theorem guarantees that the smallest

eigenvalue of rTk is smaller than or equal to that of Tk´1. Thus it is possible to choose �k

satisfying the requirements of Proposition 4.3.

We now comment on the surprising fact that �k P C in Proposition 4.3. To avoid forming

Tk and rTk explicitly, we would prefer to pick a nonzero σest P p0, σrq and seek �k such that

σest is the smallest singular value of

rBk “
«

Lk

�ke
T
k

ff
. (4.27)

The fact that �k P C is a departure from the computations of Chapter 3, which established

that the last diagonal of rTk is real: α2
k ` �2

k P R. In order for �2
k to be real, �k must be

either real or purely imaginary. In a numerical implementation of (4.27), although it is

possible to avoid computations in complex arithmetic, we do observe corrections �k such

that the last diagonal is strictly less than α2
k, i.e., such that �k is purely imaginary.

An alternative strategy that avoids complex numbers altogether is to pick a nonzero
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σest P p0, σrq and seek ωk such that σest is the smallest singular value of

rRk “
«
Rk´1 δkek´1

ωk

ff
. (4.28)

Note that rRk differs from Rk, the R factor in the QR factors of Bk (4.10), in the pk, kq-th
entry only. In addition, if rRk is the Cholesky factor of rTk, its diagonals are guaranteed to be

real and positive and the smallest eigenvalue of rTk will be σ2
est.

As earlier, the Poincaré separation theorem guarantees that the singular values of each

Rk´1, which are the same as those of Bk´1, lie between σr and σ1, and the Cauchy interlace

theorem for singular values guarantees that it is indeed possible to choose ωk so that the

smallest singular value (4.28) is σest. We restate Proposition 4.3 with the above in mind.

Theorem 4.4 Suppose f : R Ñ R is such that f p2j`1qpξq ă 0 for all ξ P pσ2
r , σ

2
1q and

all j ě 0. Fix σest P p0, σrq. Let Bk be the bidiagonal generated after k steps of Algorithm 2

and ωk ą 0 be chosen so that the smallest singular value of (4.28) is precisely σest. Then,

bTAfpATAqATb ď β̄2
1e

T
1 fp rRT

k
rRkqe1.

In order to determine ωk, we follow Golub and Kahan (1965) and embed rRk into a larger

symmetric matrix to change the singular value problem into an eigenvalue problem. Indeed,

«
0 rRk

rRT
k 0

ff
(4.29)

has eigenvalues ˘σip rRkq. Define

Y2k´2 :“

»
——————–

0 γ1
γ1 0 δ2

δ2 0 γ2
γ2 0 δ3

δ3 0
. . .

. . .
. . . γk´1

γk´1 0

fi
ffiffiffiffiffiffifl
, rY2k :“

»
—–

Y2k´2 δke2k´2

δke
T
2k´2 0 ωk

ωk 0

fi
ffifl .

Note that rY2k is a symmetric permutation of (4.29) and therefore shares the same eigenvalues.

If σest is an eigenvalue of rY2k and hp2kq “ pχ1, . . . ,χ2kq is a corresponding eigenvector, then

prY2k ´ σestIqhp2kq “ 0; that is,

»
—–
Y2k´2 ´ σestI δke2k´2

δke
T
2k´2 ´σest ωk

ωk ´σest

fi
ffifl

»
—–
h

p2kq
2k´2

χ2k´1

χ2k

fi
ffifl “ 0.

Necessarily, χ2k´1 ‰ 0 because otherwise hp2kq “ 0 entirely. Thus we may fix χ2k´1 “ 1.

The first block equation reads pY2k´2 ´σestIqhp2kq
2k´2 “ ´δke2k´2. Let χ2k´2 be the last entry

of h
p2kq
2k´2, which can be computed by updating the QR factors of Y2k´2 as in Section 3.2.2.
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In order to compute ωk, note that the last two equations,

«
δk ´σest ωk

ωk ´σest

ff »
—–
χ2k´2

1

χ2k

fi
ffifl “ 0,

imply that ωk “ a
σ2
est ´ σestδkχ2k´2.

With ωk computed, we have rRT
k

rRk “ rTk. We are now interested in efficiently computing

the upper bound

}x‹}2 ď β̄2
1e

T
1 fp rRT

k
rRkqe1 “ β̄2

1e
T
1 p rRT

k
rRkq´2e1. (4.30)

The LQ factorization rRk “ ĂMk
rQk provides the LQ factorization rTk “ rRT

k
ĂMk

rQk, which in

turn yields

}x‹}2 ď
›››β̄1

ĂM´1
k

rR´T
k e1

›››
2 “ }ĂM´1

k t̃k}2 “ }z̃k}2,

where we define t̃k and z̃k from rRT
k t̃k “ β̄1e1 and ĂMkz̃k “ t̃k as in Section 3.2.2. We

determine the LQ factorization rRk “ ĂMk
rQk from

rRk “
«
Rk´1 δkek´1

ωk

ff
“

«
Mk´1

rηkeTk´1 rεk

ff «
Qk´1

1

ff
.

Thus rQk “ Qk and ĂMk differs from Mk in the pk, k ´ 1q-th and pk, kq-th entries only, which

become

rηk “ ωksk´1, rεk “ ´ωkck´1.

Recalling the definition of tk in (4.17) and zk´1 in (4.18) we observe that

t̃k “
«
tk´1

τ̃k

ff
and z̃k “

«
zk´1

rζk

ff
, (4.31)

where

rτk “ ´τk´1δk{ωk “ τkγk{ωk and rζk “ prτk ´ rηkζk´1q{rεk. (4.32)

From (4.22) and orthogonality of Wk we now have

}x‹ ´ xL
k }2 “ }x‹}2 ´ }xL

k }2 ď }zk´1}2 ` rζ2k ´ }zk´1}2 “ rζ2k . (4.33)

4.4.2 Upper bound on the LSQR error

Obtaining an upper bound on the LSQR error is of interest for two reasons. First, LSLQ

may transfer to the LSQR point at any iteration using a simple vector operation—see (4.20).

Second, LSQR always produces a smaller error, as formalized by Proposition 4.1.

Based on Proposition 4.1, we wish to use the upper bound (4.33) and the transition (4.20)

to the LSQR point to terminate LSLQ early and obtain an iterate with an error below a

prescribed level. Evidently the same upper bound (4.33) could be used, but (3.17) provides

the improved bound

}x‹ ´ xC
k }2 ď rζ2k ´ ζ̄2k , (4.34)
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where ζ̄k is defined in (4.18) and rζk is in (4.32). The bound can further be improved using

(3.18) using an additional Opdq flops and storage by computing θ
pdq
k ě 0 such that

}x‹ ´ xC
k }2 ď rζ2k ´ ζ̄2k ´ 2θ

pdq
k .

4.5 Regularization

LSLQ may be adapted to solve the regularized least-squares problem

minimize
xPRn

1
2

›››››

«
A

λI

ff
x ´

«
b

0

ff›››››

2

, (4.35)

where λ ě 0 is a given regularization parameter. The optimality conditions (NE-LS) become

pATA ` λ2Iqx “ ATb. (4.36)

If we run Algorithm 2 on A only, we will produce the factorization

«
A

λI

ff
Vk “

«
Uk`1

Vk

ff «
Bk

λI

ff
, (4.37)

which we can compare to the factorization achieved when running Algorithm 2 on the entire

regularized system,

«
A

λI

ff
Vk “ Ûk`1B̂k “ Ûk`1

»
———–

α̂1

β̂2

. . .

. . . α̂k

β̂k`1

fi
ffiffiffifl. (4.38)

Note that Vk will remain unchanged, as can be seen from the equivalence between the

Golub-Kahan process and the Lanczos process on the normal equations (Saunders, 1995).

Given B̂k, we could run the non-regularized LSLQ algorithm (using α̂ and β̂ instead of α and

β) to obtain all of the desired iterates and estimates. The idea is then to compute Bk via

Golub-Kahan on pA, bq, cheaply compute each α̂k and β̂k and use them in place of αk and

βk in the rest of the algorithm. For k “ 3, the factorization proceeds according to Fig. 4.2.

We use βk`1 to zero out λk, which transforms αk`1 into α̂k`1 and introduces a nonzero

λ̂k`1 above λ in the next column. We then use a second reflection to zero out λ̂k`1 using λ,

which produces λk`1. With λ1 “ λ, the recurrences for k ě 2 are

β̂k`1 “ pβ2
k`1 ` λ2

kq 1
2 ,

cLk “ βk`1{β̂k`1,

sLk “ λk{β̂k`1,

α̂k`1 “ cLkαk`1,

λ̂k`1 “ sLkαk`1,

λk`1 “ pλ2 ` λ̂2
k`1q 1

2 .

(4.39)
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»
—————–

α1

β2 α2

β3 α3

β4

λ
λ

λ

fi
ffiffiffiffiffifl

Ñ

»
—————–

α1

β̂2 α̂2

β3 α3

β4

λ̂2

λ
λ

fi
ffiffiffiffiffifl

Ñ

»
—————–

α1

β̂2 α̂2

β3 α3

β4

λ2

λ

fi
ffiffiffiffiffifl

Ñ

»
—————–

α1

β̂2 α̂2

β̂3 α̂3

β4

λ̂3

λ

fi
ffiffiffiffiffifl

Ñ

»
—————–

α1

β̂2 α̂2

β̂3 α̂3

β4

λ3

fi
ffiffiffiffiffifl

Ñ

»
—————–

α1

β̂2 α̂2

β̂3 α̂3

β̂4

fi
ffiffiffiffiffifl

Figure 4.2: Reducing
“
BT

k λI
‰T

to B̂k for k “ 3 via Givens rotations.

With λ ą 0, the operator of (4.35) has full column rank, i.e., r “ n, and satisfies σn ě λ.

Theorem 4.4 then states that we should select σest P rλ,σnq if A is nearly rank-deficient

(choosing σest “ λ works well if A is nearly rank-deficient).

4.6 Numerical experiments

We use the Julia LSLQ implementation1 with the relevant error bounds for the follow-

ing experiments. The exact solution of (LS) was computed using a complete orthogonal

decomposition of A via the Factorize package (Davis, 2013).

4.6.1 Problems from the animal breeding test set

In this section, we use test problems from the animal breeding collection of Hegland (1990,

1993). These over-determined problems have rank-deficiency 1, come in two flavors and sizes,

and have accompanying right-hand sides. In the first flavor, a single parameter is fitted per

animal, while in the second flavor, two parameters are fitted per animal and A has twice as

many rows and columns. The nonzero columns of A are scaled to have unit Euclidean norm.

We begin with an illustration of the non-robust lower bound (4.25) based on a delay d.

Figure 4.3 plots the actual LSLQ error along with the lower bound with delay (window size)

d “ 5 and 10 iterations for problems large and large2. The behavior seen is typical. As in the

left-hand plot, the lower bound tends to follow the exact error curve tightly when the latter

is strictly decreasing. But as the right-hand plot shows, it tends to underestimate the actual

error by several orders of magnitude when the latter plateaus, and requires a fair number of

iterations to recover, rendering the (4.25) unreliable by itself. In both plots, the stopping

test used is (4.25) with ε “ 10´10. The curves for d “ 5 and 10 are almost the same.

Figure 4.4 illustrates the behavior of our upper bound (4.33) on problems large and

large2 with regularization: a typical scenario for rank-deficient problems whose smallest

nonzero singular value is unknown. For a given value λ ‰ 0, the smallest singular value of

the regularized A is σn “ |λ|. Experiments in Section 3.7.2 show that the upper bound is

tighter when |σest| is closer to |σn|, but they do not consider the effect of regularization. For

1https://github.com/JuliaSmoothOptimizers/Krylov.jl
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Figure 4.3: Error along the LSLQ iterations on problems large and large2 from the animal
breeding set. The red and blue curves show the lower bounds with d “ 5 and d “ 10.
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Figure 4.4: Error along the LSLQ iterations on problems large and large2 with regularization.
The red and blue curves show the lower bounds with d “ 5 and d “ 10. The cyan curve
shows the upper bounds for λ “ 10´4 (top) and λ “ 10´2 (bottom).
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Figure 4.5: Error along the LSQR iterations on problems large and large2 with regularization.
The cyan curve shows the upper bounds for σest “ 10´4 (top) and σest “ 10´2 (bottom).

each value of λ ą 0, we set σest :“ p1 ´ 10´10qλ and measure the error with respect to the

solution of the regularized problem.

We observe from Figure 4.4 that increasing λ (and hence σest) substantially improves

the quality of the upper bound. The reason may be that rTk is moved further away from

singularity. In the case of large2 with λ “ 10´2, the upper bound is exceptionally tight after

about 100 iterations. As λ decreases, the upper bound deteriorates, although it remains a

potentially useful bound as long as λ ‰ 0.

In Figure 4.5, we compute the bound (4.34) on the error along the LSQR iterates or,

equivalently, along the LSQR points obtained by transitioning from a corresponding LSLQ

point. As with LSLQ, the quality of the LSQR upper bound deteriorates when A, or its

regularization, approaches rank-deficiency. The LSQR bound appears somewhat looser than

the LSLQ bound, although it could be tightened using (4.34).

The next experiment illustrates the upper bounds for rank-deficient problems when

we have knowledge of σr. A sparse SVD reveals that the smallest nonzero singular value

after scaling is approximately σr “ σn´1 « 0.0498733 for problem small and σr “ σn´1 «
0.00499044 for small2. In each case, we set σest “ p1 ´ 10´10qσn´1. In practice, one may

need to underestimate further in order to account for inaccurate σr.

As the error bounds in Figure 4.6 are quite tight, it seems important to supply an estimate
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Figure 4.6: Error along the LSLQ and LSQR iterations on problems small and small2 without
regularization. Both problems have rank-deficiency 1.

of σr in rank-deficient problems if such knowledge is available. In Figure 4.6, LSLQ stops as

soon as the upper bound on the LSQR error falls below 10´10}xC
k }.

4.6.2 The seismic inverse problem

The least-squares problem arising from the PDE-constrained optimization problem described

in Section 4.1 has the form

minimize
xPRn

1
2

›››››

«
ρA

P

ff
x ´

«
ρq

d

ff›››››

2

, (4.40)

where ρ “ 0.1 is fixed, A is a square 5-point stencil discretization of a Helmholtz operator,

P is a sampling operator (some rows of the identity), and q and d are fixed vectors. We

experimented with a case in which n “ 83, 600 and P has 248 rows. The columns of the

operator were not scaled as in the previous section, as that reduced the performance of LSLQ.

A complete orthogonal decomposition, used to compute the exact solution, reveals that the

operator of (4.40) has full rank but its smallest nonzero singular value is Op10´6q. A partial

sparse SVD suggests that there are several small singular values. To obtain upper error

bounds, it was necessary to set σest “ 10´7 to avoid domain errors in computing the square
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Figure 4.7: Error along the LSLQ and LSQR iterations on the seismic inverse problem
without regularization (left) and with regularization (right).

root in the expression for ωk preceding (4.30).

The left plots of Figure 4.7 illustrate the upper and lower bounds on the error and the

large number of iterations needed to decrease the error by a factor of 1010. The bounds

on the LSLQ and LSQR errors nonetheless track the exact errors quite accurately, with the

upper bound on the LSQR error overestimating by one or two orders of magnitude. Though

the factor 1010 is far too demanding in practice, it illustrates that many iterations are likely

when there are many tiny singular values. The situation is similar when the problem is

regularized and the error is measured with respect to the exact solution of the original,

unregularized, problem. The right plots of Figure 4.7 show the bounds in the presence of

modest regularization λ when the error is computed with respect to the exact solution of the

regularized problem. Dramatically fewer iterations are needed to achieve a corresponding

decrease in the error. Note the remarkable tightness of the LSLQ and LSQR bounds, with

the LSQR upper bound consistently overestimating by about one order of magnitude. The

improved performance on the regularized problem suggests that a regularized optimization

approach, such as that of Arreckx and Orban (2018), could be appropriate.



Chapter 5

LNLQ: An iterative method for linear

least-norm problems

We complete the trifecta of LQ methods by introducing LNLQ for solving consistent least-norm

problems (LN):

x‹ :“ min
xPRn

}x} subject to Ax “ b.

A unique y‹ solves the problem

min
yPRm

}y} subject to AATy “ b, (5.1)

and px‹, y‹q is the least-norm solution of the normal equations of the second kind:

AATy “ b, x “ ATy ðñ
«
I AT

A

ff «
x

´y

ff
“

«
0

b

ff
. (NE-LN)

LNLQ can also handle linear systems (L) as a special case.

This chapter is based on (Estrin et al., 2019e).

5.1 Motivation

Block linear systems of the form (NE-LN) occur during evaluation of the value and gradient

of the penalty function for constrained optimization of Part II. Our main motivation is to

devise reliable termination criteria that allow control of the error in the solution of (NE-LN),

thus allowing us to evaluate inexact gradients cheaply while maintaining global convergence

properties of the underlying optimization method. Our approach follows the philosophy of

Chapters 3 and 4 and requires an estimate of the smallest singular value of A. Although

such an estimate may not always be available in practice, good underestimates are often

available in optimization problems, including PDE-constrained problems—see Section 5.7.

Arioli (2013) develops an upper bound on the error in xk along the CRAIG (Section 2.2.4)

iterations based on an appropriate Gauss-Radau quadrature (see Section 2.3.1), and suggests

the seemingly simplistic upper bound }yk ´ y‹} ď }xk ´ x‹}{σr, where σr is the smallest

nonzero singular value of A. Although his bound is often effective, we derive improved

bounds for CRAIG using LNLQ by introducing a delay d as in (Golub and Strakǒs, 1994).

45
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5.2 Derivation

LNLQ is based on the Golub and Kahan process (Algorithm 2); LNLQ applied to (LN) is

equivalent to SYMMLQ (Paige and Saunders, 1975) applied to (NE-LN). Identity (2.12b)

yields

AATUk “ Uk`1Bk`1L
T
k “ Uk`1Hk, where Hk :“

«
LkL

T
k

αkβk`1e
T
k

ff
, (5.2)

while line 1 of Algorithm 2 yields b “ β1u1. For this chapter, we use the shorthand

ᾱ1 :“ α2
1, ᾱk :“ α2

k ` β2
k, and β̄k :“ αkβk`1, k “ 2, 3, . . . (5.3)

As noted by Fong and Saunders (2011), the above characterizes the situation after k`1 steps

of the Lanczos (1950) process applied to AAT with initial vector b. For k ě 1, we denote

Tk :“ LT
k Lk “

»
————–

ᾱ1 β̄2

β̄2 ᾱ2

. . .

. . .
. . . β̄k

β̄k ᾱk

fi
ffiffiffiffifl
, Hk “

«
Tk

β̄k`1e
T
k

ff
. (5.4)

Note that Tk is k-by-k and tridiagonal, and Hk is pk ` 1q-by-k.

5.2.1 CRAIG

The kth iteration of CG applied to (NE-LN) computes yCk “ Ukȳ
C
k , where Tkȳ

C
k “ β1e1. In

exact arithmetic, xC
k “ ATyCk is equivalent to the CRAIG iterate. Paige (1974) also provided

an equivalent description based on Algorithm 2:

Lktk “ β1e1, xC
k :“ Vktk “ xC

k´1 ` τkvk, (5.5)

where tk :“ pτ1, . . . , τkq, and the components of tk can be found recursively from τ1 “ β1{α1,

τj “ ´βjτj´1{αj (j ě 2). The residual for CRAIG is

rCk :“ b ´ AxC
k “ β1u1 ´ AVktk “ Uk`1pβ1e1 ´ Bktkq “ ´βk`1τkuk`1. (5.6)

Many of the following results can be found scattered in the literature. For completeness,

we gather them here and provide proofs.

Proposition 5.1 Let x‹ be the solution of (LN) and y‹ the associated Lagrange multiplier

with minimum norm, i.e., the solution of (5.1). The kth CRAIG iterates xC
k and yCk solve

xC
k “ argmin

x

1
2}x ´ x‹}2 subject to x P rangepVkq, (5.7)

“ argmin
x

1
2}x}2 subject to x P rangepVkq, b ´ Ax K rangepUkq, (5.8)

yCk “ argmin
y

1
2}y ´ y‹}2AAT subject to y P rangepUkq, (5.9)

“ argmin
y

1
2}y}2AAT subject to y P rangepUkq, b ´ AATy K rangepUkq. (5.10)
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When A is row-rank-deficient, the pAAT q-norm should be interpreted as a norm when

restricted to rangepAq.

Proof. Assume temporarily that A has full row rank, so that AAT is symmetric positive

definite. Then there exists a unique y‹ such that x‹ “ ATy‹ and

}xC
k ´ x‹} “ }ATpyCk ´ y‹q} “ }yCk ´ y‹}AAT .

In words, the Euclidean norm of the error in xk is the energy norm of the error in yk.

Theorem 6:1 of Hestenes and Stiefel (1952) ensures that yCk is chosen to minimize the energy

norm of the error over all y P rangepUkq, i.e., yCk solves (5.9).

To y P rangepUkq, there corresponds x “ ATy P rangepATUkq “ rangepVkL
T
k q “ rangepVkq

by (2.11) because Lk is nonsingular. Consequently, CRAIG generates xC
k as a solution of (5.7).

When A is rank-deficient, our assumption that Ax “ b is consistent ensures that AATy “ b

is also consistent because if there exists a subpace of solutions x, it is possible to pick the one

that solves (NE-LN), and therefore b P rangepAAT q. Kammerer and Nashed (1972) show that

in the consistent singular case, CG converges to the solution y‹ of (5.1). Let r ă minpm,nq
be such that σr ą 0 and σr`1 “ ¨ ¨ ¨ “ σminpm,nq “ 0. Then rankpAq “ r “ dim rangepAq
and the smallest nonzero eigenvalue of AAT is σ2

r . The Rayleigh-Ritz theorem states that

σ2
r “ min t}ATw}2 | w P rangepAq, }w} “ 1u.

By (2.11), each uk P rangepAq, and (5.2) and (5.4) imply that UT
k AATUk “ Tk in exact

arithmetic. Thus for any t P Rk such that }t} “ 1, we have }Ukt} “ 1 and

tTUT
k AATUkt “ tTTkt ě σ2

r ,

so that the Tk are uniformly positive definite and CG iterations occur as if CG were applied

to the positive-definite reduced system PT
r AATPrỹ “ PT

r b, where Pr is the m ˆ r matrix

of orthogonal eigenvectors of AAT corresponding to nonzero eigenvalues. Thus in the

rank-deficient case, yCk also solves (5.9) except that the energy norm” is only a norm when

restricted to rangepAq, and xC
k also solves (5.7).

To establish (5.8), note that (5.5) and (5.6) imply that xC
k is primal feasible for (5.8).

Dual feasibility requires that there exist vectors x̄, ȳ and z̄ such that x “ z̄ ` ATUkȳ,

V T
k z̄ “ 0 and x “ Vkx̄. The first two conditions are equivalent to V T

k x “ 0 ` V T
k ATUkȳ “

BT
k U

T
k`1Ukȳ “ LT

k ȳ. Because x “ Vkx̄, this amounts to x̄ “ LT
k ȳ. Thus dual feasibility is

satisfied with x̄ :“ x̄C
k , ȳ :“ ȳCk and z̄ :“ 0. The proof of (5.10) is similar.

5.2.2 LNLQ: implementation

By contrast, LNLQ iterates are defined by yLk “ Ukȳ
L
k , where ȳLk is the solution to

minimize
ȳ

1
2}ȳ}2 subject to HT

k´1ȳ “ β1e1. (5.11)

As in SYMMLQ, the computation of ȳLk follows from the LQ factorization of HT
k´1, which

can be derived implicitly via the LQ factorization of Tk “ LkL
T
k . As Lk is already lower
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triangular, we only need the factorization

LT
k “ ĎMkQk, ĎMk :“

»
————–

ε1
η2 ε2

. . .
. . .

ηk ε̄k

fi
ffiffiffiffifl

“
«
Mk´1

ηke
T
k´1 ε̄k

ff
, (5.12)

where QT
k “ Q1,2Q2,3 . . . Qk´1,k is orthogonal and defined as a product of plane reflections,

where Qj´1,j is the identity except for elements at the intersection of rows and columns j ´ 1

and j. Initially, ε̄1 “ α1 and Q1 “ I. Subsequent factorization steps are represented as

« j ´ 2 j ´ 1 j

j ´ 1 ηj´1 ε̄j´1 βj

j αj

ff »
—–

j ´ 2 j ´ 1 j

1

cj sj
sj ´cj

fi
ffifl “

« j ´ 2 j ´ 1 j

ηj´1 εj´1

ηj ε̄j

ff
,

where the border indices indicate row and column numbers, with the understanding that

ηj´1 is absent when j “ 2. For j ě 2, Qj´1,j is defined by

εj´1 “
b
ε̄2j´1 ` β2

j , cj “ ε̄j´1{εj´1, sj “ βj{εj´1,

and the application of Qj´1,j results in

ηj “ αjsj , ε̄j “ ´αjcj . (5.13)

We may write HT
k´1 “

”
Lk´1L

T
k´1 αk´1βkek´1

ı
“ Lk´1

”
LT
k´1 βkek´1

ı
. From (5.12),

LT
k “

«
LT
k´1 βkek´1

αk

ff
“

«
Mk´1

ηke
T
k´1 ε̄k

ff
Qk ñ

”
LT
k´1 βkek´1

ı
“

”
Mk´1 0

ı
Qk.

Finally, we obtain the LQ factorization

HT
k´1 “

”
Lk´1Mk´1 0

ı
Qk. (5.14)

5.2.3 Definition and update of LNLQ iterates

To solve HT
k´1ȳ

L
k “ β1e1 using (5.14), note that we already have Lk´1tk´1 “ β1e1 (5.5), with

the next iteration giving τk “ ´βkτk´1{αk. Next, we consider Mk´1zk´1 “ tk´1 and find the

components of zk´1 “ pζ1, . . . , ζk´1q recursively as ζ1 “ τ1{ε1, ζj “ pτj ´ ηjζj´1q{εj pj ě 2q.
This time, the next iteration yields ζ̄k “ pτk ´ ηkζk´1q{ε̄k and ζk “ ζ̄kε̄k{εk “ ck`1ζ̄k. Thus,

ȳLk “ QT
k

«
zk´1

0

ff
and ȳCk “ QT

k

«
zk´1

ζ̄k

ff
“ QT

k z̄k (5.15)

solve (5.11) and Tkȳ
C
k “ β1e1 respectively, matching the definition of the CRAIG iterate.
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By construction, yLk “ Ukȳ
L
k and yCk “ Ukȳ

C
k . We define the orthogonal matrix

ĎWk “ UkQ
T
k “

”
w1 ¨ ¨ ¨ wk´1 w̄k

ı
“

”
Wk´1 w̄k

ı
, w̄1 :“ u1,

so that (5.15) with zk´1 and z̄k :“ pzk´1, ζ̄kq yields the orthogonal updates

yLk “ ĎWk

«
zk´1

0

ff
“ Wk´1zk´1 “ yLk´1 ` ζk´1wk´1, (5.16)

yCk “ ĎWkz̄k “ Wk´1zk´1 ` ζ̄kw̄k “ yLk ` ζ̄kw̄k. (5.17)

Because ĎWk is orthogonal, we have

}yLk }2 “ }zk´1}2 “
k´1ÿ

j“1

ζ2j and }yCk }2 “ }yLk }2 ` ζ̄2k . (5.18)

Thus }yCk } ě }yLk }, }yLk } is monotonically increasing, }y‹ ´ yLk } is monotonically decreasing,

and }y‹ ´ yLk } ě }y‹ ´ yCk }, consistent with Theorem 3.4.

Contrary to the update of yCk in CRAIG, yLk is updated along orthogonal directions and

yCk is found as an orthogonal update of yLk . The latter follows from the transfer procedure of

SYMMLQ to the CG point described by Paige and Saunders (1975).

At the next iteration,

”
wk w̄k`1

ı
“

”
w̄k uk`1

ı «
k k ` 1

ck`1 sk`1

sk`1 ´ck`1

ff

ñ wk “ ck`1w̄k ` sk`1uk`1,

w̄k`1 “ sk`1w̄k ´ ck`1uk`1.

5.2.4 Residual estimates

We define the residual

rk :“ b ´ Axk “ b ´ AATUkȳk “ Uk`1pβ1e1 ´ Hkȳkq

using line 1 of Algorithm 2 and (5.2), where ȳk is either ȳLk or ȳCk . Then for k ą 1,

Tkȳ
L
k “ LkL

T
k ȳ

L
k “ Lk

ĎMkQkQ
T
k

«
zk´1

0

ff

“
«

Lk´1

βke
T
k´1 αk

ff «
Mk´1

ηke
T
k´1 ε̄k

ff «
zk´1

0

ff

“
«

Lk´1

βke
T
k´1 αk

ff «
tk´1

ηkζk´1

ff
“

«
β1e1

βkτk´1 ` αkηkζk´1

ff
,
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where we use (5.12), the definition of tk´1 and zk´1, and (5.15). Note also that the identity

Qkek “ skek´1 ´ ckek yields

eTk ȳ
L
k “ eTkQ

T
k

«
zk´1

0

ff
“ skζk´1.

The above and (5.2) combine to give

rLk “ Uk`1

˜«
β1e1
0

ff
´

«
LkL

T
k

β̄k`1e
T
k

ff
ȳLk

¸
“ ´ Uk`1

»
—–

0

βkτk´1 ` αkηkζk´1

β̄k`1skζk´1

fi
ffifl

“ ´ pβkτk´1 ` αkηkζk´1quk ´ β̄k`1skζk´1uk`1. (5.19)

By orthogonality, the residual norm is cheaply computable as

}rLk }2 “ pβkτk´1 ` αkηkζk´1q2 ` pβ̄k`1skζk´1q2.

Similarly,

rCk “ Uk`1

˜«
β1e1
0

ff
´

«
Tk

β̄k`1e
T
k

ff
ȳCk

¸
“ ´ Uk`1

«
0

β̄k`1e
T
k

ff
QT

k z̄k

“ ´ β̄k`1Uk`1

«
0

ske
T
k´1 ´ cke

T
k

ff «
zk´1

ζ̄k

ff

“ ´β̄k`1pskζk´1 ´ ck ζ̄kquk`1, (5.20)

where we use Tkȳ
C
k “ β1e1 (by definition) and (5.15). Orthogonality of the uj yields orthog-

onality of the CRAIG residuals, a property of CG (Hestenes and Stiefel, 1952, Theorem 5:1).

The CRAIG residual norm is simply

}rCk } “ β̄k`1 |skζk´1 ´ ck ζ̄k|.

In the next section, alternative expressions of }rLk } and }rCk } emerge.

5.2.5 Updating x “ ATy

The definition yk “ Ukȳk and (2.11) yield xk “ ATyk “ ATUkȳk “ VkL
T
k ȳk. The LNLQ and

CRAIG iterates may then be updated as

xL
k “ VkL

T
k ȳ

L
k “ VkL

T
kQk

«
zk´1

0

ff

“ Vk
ĎMk

«
zk´1

0

ff
“ Vk

«
Mk´1

ηke
T
k´1 ε̄k

ff «
zk´1

0

ff

“ Vk´1Mk´1zk´1 ` ηkζk´1vk

“ Vk´1tk´1 ` ηkζk´1vk, (5.21)
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and similarly,

xC
k “ Vk

«
Mk´1

ηke
T
k´1 ε̄k

ff «
zk´1

ζ̄k

ff
“ xL

k ` ε̄k ζ̄kvk. (5.22)

Because Vk is orthogonal, we have

}xL
k }2 “

k´1ÿ

j“1

τ2j ` pηkζk´1q2 and }xC
k }2 “

k´1ÿ

j“1

τ2j ` pηkζk´1 ` ε̄k ζ̄kq2. (5.23)

Both xL
k and xC

k may be found conveniently if we maintain the delayed iterate x̃k´1 :“
τ1v1 ` ¨ ¨ ¨ ` τk´1vk´1 “ x̃k´2 ` τk´1vk´1, for then we have the orthogonal updates

xL
k “ x̃k´1 ` ηkζk´1vk and xC

k “ x̃k´1 ` pηkζk´1 ` ε̄k ζ̄kqvk. (5.24)

Proposition 5.2 We have ε̄1ζ̄1 “ τ1 and for k ą 1, ηkζk´1 ` ε̄k ζ̄k “ τk. This gives the

same expressions as for standard CRAIG:

xC
k “

kÿ

j“1

τkvk and rCk “ ´βk`1τkuk`1.

Proof. The identity for k “ 1 follows from the definitions of ε̄1, ζ̄1, and τ1. By definition

of ζ̄k, we have ε̄k ζ̄k “ τk ´ ηkζk´1, i.e., ηkζk´1 ` ε̄k ζ̄k “ τk. The expressions for xC
k and rCk

follow from (5.24) and from (5.20), the definition of β̄k`1, and (5.13).

Proposition 5.2 shows that xC
k is updated along orthogonal directions, so that }xC

k } is

monotonically increasing and }x‹ ´ xC
k } is monotonically decreasing, as stated by Paige

(1974). Finally, (5.21) and Proposition 5.2 give xL
k “ xC

k´1 ` ηkζk´1vk.

Proposition 5.2 allows us to write τk ´ ηkζk´1 “ �̄k ζ̄k. Because βkτk´1 “ ´αkτk, the

LNLQ residual may be rewritten

rLk “ αkpτk ´ ηkζk´1quk ´ β̄k`1skζk´1uk`1

“ αk �̄k ζ̄kuk ´ αkβk`1skζk´1uk`1,

and correspondingly, }rLk }2 “ α2
kpp�̄k ζ̄kq2 ` pβk`1skζk´1q2q.

Proposition 5.3 Let x‹ and y‹ solve (5.1) and (NE-LN). The kth LNLQ iterates yLk
and xL

k solve

xL
k “ argmin

x

1
2}x ´ x‹}2pAAT q: subject to x P rangepVk´1q, (5.25)

“ argmin
x

1
2}x}2pAAT q: subject to x P rangepVkq, b ´ Ax K rangepUk´1q, (5.26)

yLk “ argmin
y

1
2}y ´ y‹}2 subject to y P rangepAATUk´1q, (5.27)

“ argmin
y

1
2}y}2 subject to y P rangepUkq, b ´ AATy K rangepUk´1q. (5.28)

When A is row-rank-deficient, the pAAT q-norm should be interpreted as a norm when

restricted to rangepAq.
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Algorithm 5 LNLQ

1: β1u1 “ b, α1v1 “ ATu1 Ź begin Golub-Kahan process
2: ε̄1 “ α1, τ1 “ β1{α1, ζ̄1 “ τ1{ε̄1 Ź begin LQ factorization
3: w1 “ 0, w̄1 “ u1

4: yL1 “ 0, yC1 “ ζ̄1w̄1

5: xL
1 “ 0, xC

1 “ τ1v1
6: for k “ 1, 2, . . . do
7: βk`1uk`1 “ Avk ´ αkuk Ź continue Golub-Kahan process
8: αk`1vk`1 “ ATuk`1 ´ βk`1vk
9: εk “ pε̄2k ` β2

k`1q 1
2 Ź continue LQ factorization

10: ck`1 “ ε̄k{εk, sk`1 “ βk`1{εk
11: ηk`1 “ αk`1sk`1, ε̄k`1 “ ´αk`1ck`1

12: ζk “ ck`1ζ̄k, ζ̄k`1 “ pτk`1 ´ ηk`1ζkq{ε̄k`1 Ź prepare to update y
13: wk “ ck`1w̄k ` sk`1uk`1, w̄k`1 “ sk`1w̄k ´ ck`1uk`1

14: yLk`1 “ yLk ` ζkwk Ź update y

15: yCk`1 “ yLk`1 ` ζ̄k`1w̄k`1

16: xL
k`1 “ xC

k ` ηk`1ζkvk`1 Ź update x
17: τk`1 “ ´βk`1τk{αk`1

18: xC
k`1 “ xC

k ` τk`1vk`1

19: end for

Proof. By definition, ȳLk solves (5.11). Hence there must exist t̄ such that ȳLk “ Hk´1t̄ and

HT
k´1ȳ

L
k “ β1e1. By definition of Hk´1 and (2.11), we have yLk “ Ukȳ

L
k “ UkBk´1L

T
k´1t̄ “

AVk´1L
T
k´1t̄ “ AATUk´1t̄.

The above implies that yLk is primal feasible for (5.27). Dual feasibility requires that

UT
k´1AATpy ´ y‹q “ 0, which is equivalent to UT

k´1r
L
k “ 0 because AATy‹ “ b. The

expression (5.19) confirms dual feasibility.

With yLk P rangepAq, we have yLk “ pA:qTxL
k and then (5.25) follows from (5.27).

Using (5.19), we see that yLk is primal feasible for (5.28). Dual feasibility requires that

yLk “ p ` AATUk´1q and UT
k p “ 0 for certain vectors p and q, but those conditions are

satisfied for p :“ 0 and q :“ t̄. Since yLk “ pA:qTxL
k , we obtain (5.26) from (5.28).

Corollary 5.4 For each k, }xC
k ´ x‹} ď }xL

k ´ x‹}.

Proof. By comparing (5.7) with (5.25), we see that }xC
k ´ x‹} ď }xL

k ´ x‹} because

rangepVk´1q Ă rangepVkq.

5.3 Complete algorithm

Algorithm 5 summarizes LNLQ. Note that if only the x part of the solution is desired, there

is no need to initialize and update the vectors wk, w̄k, y
L
k and yCk unless one wants to retrieve

x as ATy at the end of the procedure. Similarly, if only the y part of the solution is desired,

there is no need to initialize and update the vectors xL
k and xC

k . The update for xC
k`1 in

line 18 of Algorithm 5 can be used even if the user wishes to dispense with updating xL
k .
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5.4 Error estimates

5.4.1 Upper bound on }y‹ ´ yLk }
By orthogonality, }y‹ ´ yLk }2 “ }y‹}2 ´ }yLk }2, so as before we want to obtain upper bounds

of }yLk }2 “ bTfpAAT qb for f defined in (4.26). We accomplish this using Gauss-Radau

quadrature as in Section 4.4. The fixed Gauss-Radau quadrature node is set to a prescribed

σest P p0, σrq. We follow Section 4.4.1 and modify Lk rather than Tk. Let

rLk :“
„

Lk´1 0

βke
T
k´1 ωk


, (5.29)

which differs from Lk in its pk, kqth element only, and

rTk :“ rLk
rLT
k “

„
Tk´1 β̄k´1ek´1

β̄k´1e
T
k´1 β2

k ` ω2
k



(with β̄k´1 defined in (5.3)), which differs from Tk in its pk, kqth element only. The Poincaré

separation theorem ensures that the singular values of Lk lie in pσr, σ1q. The Cauchy

interlace theorem for singular values ensures that it is possible to select ωk so that the

smallest singular value of (5.29) is σest. The next result is a paraphrase of Theorem 2.3.

Theorem 5.5 Let f : r0, 8q Ñ R be such that f p2j`1qpξq ă 0 for all ξ P pσ2
r , σ

2
1q and

all j ě 0. Fix σest P p0, σrq. Let Lk be the bidiagonal generated after k steps of Algorithm 2,

and ωk ą 0 be chosen so that the smallest singular value of (5.29) is σest. Then,

bT fpAAT qb ď β2
1e

T
1 fprLk

rLT
k qe1.

The procedure to compute ωk “ a
σ2
est ´ σestβkθ2k´2 is identical to that of Section 4.4.1,

where θ2k´2 is an element of a related eigenvector. Application of Theorem 5.5 to fpξq :“ ξ´2

with the convention that fp0q :“ 0 provides an upper bound on }y‹}2.
Corollary 5.6 Fix σest P p0, σrq. Let Lk be the bidiagonal generated after k steps of

Algorithm 2, and ωk ą 0 be chosen so that the smallest singular value of (5.29) is σest. Then

}y‹}2 ď β2
1e

T
1 prLk

rLT
k q´2

e1.

To evaluate the bound in Corollary 5.6, we modify the LQ factorization (5.12) to

rLT
k “

«
LT
k´1 βkek´1

0 ωk

ff
“

«
Mk´1

rηkeTk´1 rεk

ff «
Qk´1

1

ff
“ ĂMkQk,

where rηk “ ωksk and rεk “ ´ωkck. Define rtk and rzk from

rLkrtk “ β1e1 and ĂMkrzk “ rtk. (5.30)

The updated factorization and the definition of f yield

}y‹}2 ď β2
1}prLk

ĂMkQkq´1
e1}2 “ β2

1}ĂM´1
k

rL´1
k e1}2 “ }ĂM´1

k
rtk}2 “ }rzk}2.
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Comparing with the definition of tk and zk in Section 5.2.3 reveals that rtk “ ptk´1, rτkq and

rzk “ pzk´1, rζkq, with rτk “ ´βkτk´1{ωk and rζk “ prτk ´ rηkζk´1q{rεk. Combining with (5.18)

yields the bound

}y‹ ´ yLk }2 “ }y‹}2 ´ }zk´1}2 ď }zk´1}2 ` rζ2k ´ }zk´1}2 “ rζ2k . (5.31)

5.4.2 Upper bound on }y‹ ´ yCk }
Theorem 3.4 establishes that }y‹ ´ yCk } ď }y‹ ´ yLk }, so that the bound from the previous

section applies. With ζ̄k defined in Section 5.2.3, we can improve the bound as in (3.17) to

}y‹ ´ yCk }2 ď rζ2k ´ ζ̄2k . (5.32)

They provide further refinement of this bound by using the sliding window approach of

Golub and Strakǒs (1994). For a chosen delay d, Opdq scalars can be stored at each iteration,

and for Opdq additional work, we can compute θ
pdq
k ě 0 (see (3.18)) so that

}y‹ ´ yCk }2 ď rζ2k ´ ζ̄2k ´ 2θ
pdq
k . (5.33)

5.4.3 Upper bound on }x‹ ´ xC
k }

Assume temporarily that A has full row rank. By orthogonality in (5.21), }x‹ ´ xC
k }2 “

}x‹}2 ´ }xC
k }2. We may then use

}x‹}2 “ }ATy‹}2 “ }y‹}2AAT “ }b}2pAAT q´1 .

Applying Theorem 5.5 to fpξq :“ ξ´1 with fp0q :“ 0 provides an upper bound on }x‹}2 in

the vein of Golub and Meurant (1994, Theorems 3.2 and 3.4).

Corollary 5.7 Fix σest P p0, σrq. Let Lk be the bidiagonal generated after k steps of

Algorithm 2, and ωk ą 0 be chosen so that the smallest singular value of (5.29) is σest. Then

}x‹}2 ď β2
1e

T
1 prLk

rLT
k q´1

e1.

We use (5.30) to evaluate the bound of Corollary 5.7 as

β2
1e

T
1 prLk

rLT
k q´1

e1 “ }β1
rL´1
k e1}2 “ }rtk}2,

which leads to the bound

}x‹ ´ xC
k }2 ď }rtk}2 ´ }tk}2 “ rτ2k ´ τ2k . (5.34)

This equals the bound of Arioli (2013), who derived it using the Cholesky factorization of Tk.

Note that Arioli (2013, Equation p4.4q) proposes the error bound

}y‹ ´ yCk } “ }L´1
n px‹ ´ xC

k q} ď σminpLkq´1 }x‹ ´ xC
k } ď σ´1

r }x‹ ´ xC
k }. (5.35)

It may be possible to improve on (5.35) by maintaining a running estimate of σminpLkq, such
as the estimate minpε1, . . . , εk´1, ε̄kq discussed by Stewart (1999).
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5.4.4 Upper bound on }x‹ ´ xL
k }

Using xL
k “ xC

k´1 ` ηkζk´1vk, we have

}x‹ ´ xL
k }2 “

››››Vn

ˆ
tn ´

„
tk´1

ηkζk´1

0

˙››››
2

“ }x‹ ´ xC
k }2 ` pτk ´ ηkζk´1q2.

Thus, using the error bound in (5.34) we obtain

}x‹ ´ xL
k }2 ď rτ2k ´ τ2k ` pτk ´ ηkζk´1q2. (5.36)

5.5 Regularization

The regularized least-norm problem is

minimize
xPRn, sPRm

1
2 p}x}2 ` }s}2q subject to Ax ` λs “ b, (5.37)

which is compatible for any λ ‰ 0. Saunders (1995, Result 7) states that applying Algorithm 2

to Â :“
”
A λI

ı
with initial vector b preserves Uk. We find corresponding pVk and lower

bidiagonal L̂k by comparing the identities

«
AT

λI

ff
Uk “

«
Vk

Uk

ff «
LT
k

λI

ff
and

«
AT

λI

ff
Uk “ pVkL̂

T
k , (5.38)

the first of which results from (2.11) and the second from Algorithm 2 applied to Â. At

iteration k, we apply reflections Q̂k designed to zero out the λI block, resulting in

«
Vk

Uk

ff «
LT
k

λI

ff
“

«
Vk

Uk

ff
Q̂T

k Q̂k

«
LT
k

λI

ff
“

”
pVk Ŷk

ı «
L̂T
k

0

ff
“ pVkL̂

T
k .

Saunders (1995) uses Q̂k to describe CRAIG with regularization under the name extended

CRAIG. If we initialize λ1 :“ λ, the first few reflections are illustrated as in Fig. 5.1, where

shaded elements are those participating in the current reflection and grayed out elements

have not yet been used. Two reflections per iteration are necessary, and the situation at

iteration k may be described as

«
k 2k 2k̀ 1

k αk λk

k̀ 1 βk`1 λ

ff «
k 2k

ĉk ŝk

ŝk ´ĉk

ff «
2k 2k̀ 1

c̃k s̃k

s̃k ´c̃k

ff
“

«
k 2k 2k̀ 1

α̂k 0

β̂k`1 λ̂k`1 λ

ff «
2k 2k̀ 1

c̃k s̃k

s̃k ´c̃k

ff

“
«

k 2k 2k̀ 1

α̂k 0

β̂k`1 0 λk`1

ff
.

The first reflection is defined by α̂k :“ a
α2
k ` λ2

k, ĉk :“ αk{α̂k, ŝk :“ λk{α̂k, and results in

β̂k`1 “ ĉkβk`1 and λ̂k`1 “ ŝkβk`1. The second reflection defines λk`1 :“
b
λ̂2
k`1 ` λ2, c̃k :“



56 CHAPTER 5. LNLQ: AN ITERATIVE METHOD FOR LEAST-NORM

»
——–

α1 λ1

β2 α2 λ
β3 α3 λ

β4 α4 λ

fi
ffiffifl Ñ

»
——–

α̂1 0

β̂2 α2 λ̂2 λ
β3 α3 λ

β4 α4 λ

fi
ffiffifl

Ñ

»
——–

α̂1 0

β̂2 α2 0 λ2

β3 α3 λ
β4 α4 λ

fi
ffiffifl Ñ

»
——–

α̂1 0

β̂2 α̂2 0 0

β̂3 α3 λ̂3 λ
β4 α4 λ

fi
ffiffifl

Ñ

»
——–

α̂1 0

β̂2 α̂2 0 0

β̂3 α3 0 λ3

β4 α4 λ

fi
ffiffifl Ñ

»
——–

α̂1 0

β̂2 α̂2 0 0

β̂3 α̂3 0 0

β̂4 α4 λ̂4 λ

fi
ffiffifl ,

Figure 5.1: Illustration of a few steps of the factorization in the presence of regularization.

λ̂k`1{λk`1, s̃k :“ λ{λk`1, and does not create a new nonzero. Only the first reflection

contributes to the kth column of pVk:

« k 2k

vk 0

0 uk

ff « k 2k

ĉk ŝk
ŝk ´ĉk

ff
“

« k 2k

ĉkvk ŝkvk
ŝkuk ´ĉkuk

ff
. (5.39)

Iteration k of LNLQ with regularization solves (5.11), but HT
k´1 is then the top pk´1q ˆk

submatrix of ”
Lk λI

ı «
LT
k

λI

ff
“ LkL

T
k ` λ2I “ Tk ` λ2I.

In (5.12), we compute the LQ factorization of L̂T
k instead of LT

k , but the details are identical,

as are the updates of yLk in (5.16) and yCk in (5.17). Because Uk is unchanged by regularization,

the residual expressions (5.19) and (5.20) remain valid. Subsequently,

«
xL
k

sLk

ff
“

«
AT

λI

ff
Ukȳk “ pVkL̂

T
k ȳk,

but we are only interested in the top half of xL
k . Let the top n ˆ k submatrix of pVk be

xWk :“
”

pw1 ¨ ¨ ¨ pwk

ı
“

”
I 0

ı
pVk “

”
Vk 0

ı
Q̂T

k .

We conclude from (5.39) that pwj “ ĉjvj for j “ 1, . . . , k. The update (5.22) remains valid

with vk replaced by pwk.
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5.6 Preconditioning

As with other Golub-Kahan-based methods, convergence depends on the distribution of

tσipAqu. Therefore we consider an equivalent system N´ 1
2AATN´ 1

2N
1
2 y “ N´ 1

2 b, where

N´ 1
2A has clustered singular values.

For the unregularized problem (NE-LN), to run preconditioned LNLQ efficiently we

replace Algorithm 2 by the generalized Golub-Kahan process (Arioli, 2013, Algorithm 3.1).

We seek a preconditioner N ą 0 such that N « AAT, and require no changes to the algorithm

except in how we generate vectors uk and vk. This is equivalent to applying a block-diagonal

preconditioner to the saddle-point system

«
I

N´1

ff «
I AT

A 0

ff «
x

´y

ff
“

«
I

N´1

ff «
0

b

ff
.

For a regularized system with λ ‰ 0, we need to solve a 2ˆ2 quasi-definite system

«
I AT

A ´λ2I

ff «
x

´y

ff
“

«
0

b

ff
. (5.40)

We cannot directly precondition with generalized Golub-Kahan as before, because properties

analogous to (5.38) do not hold for N ‰ I. Instead we must precondition the equivalent 3ˆ3

block system

»
—–
I

I

N´1

fi
ffifl

»
—–
I AT

I λI

A λI

fi
ffifl

»
—–

x

s

´y

fi
ffifl “

»
—–
I

I

N´1

fi
ffifl

»
—–
0

0

b

fi
ffifl ,

where N « AAT ` λ2I is a symmetric positive definite preconditioner. In effect, we must

run preconditioned LNLQ directly on Â “
”
A λI

ı
.

5.7 Implementation and numerical experiments

We use the Matlab implementation of LNLQ1, including the relevant error bounds. The

exact solution for each experiment is computed using Matlab’s backslash operator on the

augmented system (NE-LN). Mentions of CRAIG below refer to transferring from the LNLQ

point to the CRAIG point.

5.7.1 UFL problems

Matrix Meszaros/scagr7-2c from the UFL collection (Davis and Hu, 2011) has size 2447ˆ3479.

We set b “ �{?
m. For LNLQ and CRAIG we record the error in xk and yk at each

iteration using the exact solution, and the error bounds discussed above using σest “
p1 ´ 10´10qσminpAq, where σminpAq was provided from the UFL collection. The same σest is

used to evaluate the bound (5.35). Fig. 5.2 records the results.

1 github.com/restrin/LinearSystemSolvers
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Figure 5.2: Error in xk (top left) and yk (top right) along the LNLQ and CRAIG iterations
for Meszaros/scagr7-2c. The solid blue (yellow) line is the exact error for LNLQ (CRAIG),
and the remaining lines show the various error bounds. The bottom left plot shows the
improved bounds (5.33) and bounds from Arioli (2013) for the error in yk for CRAIG with
d “ 5 and 10. The bottom right plot shows the same bounds divided by the true error.

We see that the LNLQ error bounds are tight, even though the error in xk is not monotonic.

In accordance with Proposition 5.1, the CRAIG error in xk is lower than the LNLQ error. The

same for the error in yk. The CRAIG error in xk is tight until the Gauss-Radau quadrature

becomes inaccurate—a phenomenon also observed by Meurant and Tichý (2014); Meurant

and Tichỳ (2018).

Regarding the CRAIG error in yk, we see that the error bounds from (5.32) and (5.35) are

similar, with (5.35) being slightly tighter. We observed that the simpler bound (5.35) nearly

overlaps with the bound (5.32) on other problems. However, (5.33) provides the ability to

tighten (5.32), and even small delays such as d “ 5 or 10 can improve the bound significantly

until the Gauss-Radau quadrature becomes inaccurate. Thus, the sliding window approach

can be useful when an accurate estimate of σminpAq is available and early termination is

relevant, for example when only a crude approximation of x‹ and y‹ is required.

In Fig. 5.3 we repeat the experiment with UFL problem LPnetlib/lp kb2, which has size

43 ˆ 68. Because LNLQ and CRAIG take more than 250 iterations, it is clear that global

orthogonality is violated, yet the upper bounds remain faithful. Hence, it may be possible to

derive these bounds by assuming only local orthogonality in the Golub-Kahan process. This

is a direction for future research.
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Figure 5.3: Error in xk (top left) and yk (top right) along the LNLQ and CRAIG iterations
for LPnetlib/lp kb2. The solid blue (yellow) line is the exact error for LNLQ (CRAIG), and
the remaining lines show the various error bounds. The bottom left plot shows the improved
bounds (5.33) and bounds from Arioli (2013) for the error in yk for CRAIG with d “ 5 and
10. The bottom right plot shows the same bounds divided by the true error.

5.7.2 Fletcher’s penalty function

We now apply LNLQ to least-norm problems arising from using Fletcher’s exact penalty

function (see (Fletcher, 1973a) and Part II) to solve PDE-constrained control problems. We

consider the problem

minimize
u, z

1
2

ż

Ω

}u ´ ud}2 dx ` 1
2α

ż

Ω

z2 dx

subject to ∇ ¨ pz∇uq “ ´ sinpωx1q sinpωx2q in Ω,

u “ 0 on BΩ,
(5.41)

where ω “ π ´ 1
8 , Ω “ r´1, 1s2, and α ě 0 is a small regularization parameter. Here, u

might represent the temperature distribution on a square metal plate, ud is the observed

temperature, and we aim to determine the diffusion coefficients z so that u matches the

observations in a least-squares sense. We discretize (5.41) using finite elements with triangular
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Figure 5.4: Error in xk (top left) and yk (top right) along the LNLQ and CRAIG iterations.
The solid blue (yellow) line is the exact error for LNLQ (CRAIG), and the remaining lines
show the various error bounds. The bottom left plot shows the improved bounds (5.33) and
bounds from Arioli (2013) for the error in yk for CRAIG with d “ 20. The bottom right plot
shows the same bounds divided by the true error.

cells, and obtain the equality-constrained problem

minimize
ū

fpūq subject to cpūq “ 0.

Let p be the number of cells along one dimension, so that u P Rp2

and z P Rpp`2q2 are the

discretizations of u and z, ū :“ pu, zq, and cpūq P Rp2

. We use p “ 31 in the experiments

below. Let Apūq :“
”
Au Az

ı
be the Jacobian of cpūq.

For a given penalty parameter σ ą 0, Fletcher’s exact penalty approach is to

minimize
ū

φσpūq :“ fpūq ´ cpūqT yσpūq
where yσpūq P argmin y 1

2

››∇fpūq ´ ApūqT y››2 ` σcpūqT y.

In order to evaluate φσpūq and ∇φσpūq, we must solve systems of the form (NE-LN). For

these experiments, we use b “ ´cpūq and A “ Apūq. Note that by controlling the error in the

solution of (NE-LN), we control the inexactness in the computation of the penalty function

value and gradient. In our experiments, we evaluate b and A at ū “ �. We first apply LNLQ
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Figure 5.5: Error in xk (left) and yk (right) along the LNLQ and CRAIG iterations. The
solid blue (yellow) line is the exact error for LNLQ (CRAIG), and the remaining lines show
the various error bounds. The bottom plot shows the same bounds for CRAIG for the error
in yk, but divided by the true error.

and CRAIG without preconditioning. The results are summarized in Fig. 5.4.

We observe trends like those in the previous section. The LNLQ bounds are quite accurate

because of our good estimate of the smallest singular value, even though the LNLQ error in xk

is not monotonic. The CRAIG error bound for xk is tight until the Gauss-Radau quadrature

becomes inaccurate, which results in a looser bound. The latter impacts the CRAIG error

bound for y in the form of the plateau after iteration 250. The error bound (5.35) is slightly

tighter than (5.32), while if we use (5.33) with d “ 20, we achieve a tighter bound until the

plateau occurs.

We now use the preconditioner N “ AuA
T
u , which corresponds to two solves of Pois-

son’s equation with fixed diffusion coefficients. Because σminppAuAuq´1AAT q “ σminpI `
pAuA

T
u q´1AzA

T
z q ě 1, we choose σest “ 1. Recall that the y-error is now measured in the

N -energy norm. The results appear in Fig. 5.5.

We see that the preconditioner is effective, and that σest “ 1 is an accurate approximation

as the LNLQ error bounds are extremely tight. The CRAIG error bounds are tight as well,

although the error bounds” for yk go below the true error in the last few iterations, which is

expected and observed in Chapter 3.



Chapter 6

Extension to SQD systems

We can generalize LSLQ and LNLQ to the solution of symmetric quasi-definite systems

(Vanderbei, 1995) of the form

«
M AT

A ´N

ff «
x

y

ff
“

«
0

b

ff
, (6.1)

where M “ MT and N “ NT are positive definite and linear systems with these matrices

can be efficiently solved. This represents the optimality conditions for problems

minimize
x

1
2}Ax ´ b}2N´1 ` 1

2}x}2M , (6.2)

minimize
x, y

1
2}x}2M ` 1

2}y}2N subject to ATx ´ Ny “ b. (6.3)

The only change required are to replace Algorithm 2 by the generalized Golub-Kahan process

(Orban and Arioli, 2017, Algorithm 4.2). The latter requires one system solve with M

and one system solve with N per iteration. Thus the generalized LSLQ applies to (6.2),

while generalized LNLQ applies to (6.3). They are equivalent to applying SYMMLQ to the

respective systems

pATN´1A ` Mqx “ ATN´1b, (6.4)

pAM´1AT ` Nqy “ ´b, Mx “ ´AT y. (6.5)

In lieu of (2.11), the generalized Golub-Kahan process can be summarized as

AVk “ MUk`1Bk, (6.6a)

ATUk`1 “ NVkB
T
k ` αk`1Nvk`1e

T
k`1 “ NVk`1L

T
k`1, (6.6b)

where now UT
k MUk “ I and V T

k NVk “ I in exact arithmetic. Pasting (6.6) together yields

«
M AT

A ´N

ff «
Vk

Uk

ff
“

«
M

N

ff «
Vk

Uk

ff «
I LT

k

Lk ´I

ff
`

«
0

βk`1Nuk`1

ff
eT2k,

«
M AT

A ´N

ff «
Vk

Uk`1

ff
“

«
M

N

ff «
Vk

Uk`1

ff «
I BT

k

Bk ´I

ff
`

«
αk`1Mvk`1

0

ff
eT2k`1.

These relations correspond to a Lanczos process applied to (6.1) with preconditioner

blkdiagpM, Nq. The small symmetric quasi-definite matrix on the right-hand side of the

previous identities is a symmetric permutation of the Lanczos tridiagonal, which is found by
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restoring the order in which the Lanczos vectors pvk, 0q and p0, ukq are generated:

T2k`1 “

»
————–

1 α1

α1 ´1 β2

β2 1 .. .
. . .

. . . αk

αk ´1 βk`1

βk`1 1

fi
ffiffiffiffifl

“
«

T2k βk`1e2k
βk`1e

T
2k 1

ff
.

Saunders (1995) and Orban and Arioli (2017) show that the CG iterates are well-defined

for (6.1) even though it is indefinite. In a similar vein, Orban and Arioli (2017) establish

that applying MINRES to (6.1) with the block-diagonal preconditioner produces alternating

preconditioned LSMR and LSQR iterations, where LSMR is applied to (6.4) and LSQR is

applied to (6.5).

It turns out that SYMMLQ applied directly to (6.1) with this preconditioner satisfies

the following property: even iterations are CG iterations, while odd iterations take a zero

step and make no progress. Thus every other iteration is wasted. Therefore, the generalized

versions of iterative methods (Orban and Arioli, 2017), such as generalized LSLQ or LNLQ,

should be used instead. The property is formalized in the following result.

Theorem 6.1 Let xLQ
k and xCG

k be the iterates generated at iteration k of SYMMLQ and

CG applied to (6.1) preconditioned by blkdiagpM, Nq, and xC
k be the iterate defined in (5.5)

(using the generalized Golub-Kahan process). Then for k ě 1, xLQ
2k´1 “ xLQ

2k “ xCG
2k “ xC

k .

Proof. We use the notation from Section 3.1 to describe the Lanczos process and how

to construct the CG and SYMMLQ iterates. By (6.6), T k and the L factor of the LQ

factorization of TT
k´1 have the form

T k “

»
————–

1 t2
t2 ´1 t3

t3 1 .. .
. . .

. . . tk
tk p´1qk´1

tk`1

fi
ffiffiffiffifl

Lk “

»
———–

γ1
δ2 γ2
ε3 δ3 γ3

. . .
. . .

. . .

εk´1 δk´1 γk´1

fi
ffiffiffifl

where each ti is a scalar. For k ě 2, the LQ factorization is accomplished using reflections

defined by »
—–
γ̄k´1 tk
δ̄k p´1qk´1

0 tk`1

fi
ffifl

«
ck sk
sk ´ck

ff
“

»
—–
γk´1 0

δk γ̄k
εk`1 δ̄k`1

fi
ffifl ,

with γ̄1 “ 1, δ̄2 “ t2, ck “ γ̄k´1

γk´1
, and sk “ tk

γk´1
.

We show that δj “ 0 for all j by showing that γ̄k “ p´1qk
ck

for k ě 2, because in that case

δk “ δ̄kck ´ p´1qk´1sk “ ptkck´1q γ̄k´1

γk´1
´ p´1qk´1 tk

γk´1

“ tk
γk´1

`p´1qk´1 ´ p´1qk´1
˘ “ 0.

For k “ 2 we have γ2
2 “ 1 ` t22 and c2 “ 1

γ2
, so that γ̄2 “ δ̄2s2 ` c2 “ t22

γ2
` 1

γ2
“ γ2 “ 1

c2
.
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Figure 6.1: Error }xk ´ x‹} generated by SYMMLQ applied to (6.1). Note that every odd
iteration makes no progress, resulting in a convergence plot resembling a step function.

Proceeding by induction, assume ck´1 “ p´1qk´1

γ̄k´1
. Then

γ̄k “ δ̄ksk ´ p´1qk´1ck “ 1
ck

`´tkck´1skck ´ p´1qk´1c2k
˘

“ ´ 1
ck

´
p´1qk´1 tk

γ̄k´1
skck ` p´1qk´1c2k

¯

“ p´1qk
ck

ˆ
sk
ck

skck ` c2k

˙
“ p´1qk

ck
.

For all k, since δk “ 0 and xLQ
k “ Wk´1zk´1 with Wk´1 having orthonormal columns, and

since pzk´1qj “ ζj is defined by Lk´1zk´1 “ }b}e1, we have ζk “ 0 for k even. Therefore

xLQ
2k “ xLQ

2k´1. Further, since ζk “ ck ζ̄k and xCG
k “ xLQ

k ` ζ̄kw̄k for some w̄k K Wk, we have

ζ2k “ 0 and xCG
2k “ xLQ

2k . The identity xCG
2k “ xC

k follows from (Saunders, 1995, Result 11).

We illustrate Theorem 6.1 using a small numerical example. We randomly generate A

and b with m “ 50, n “ 30, M “ I, and N “ I and run SYMMLQ directly on (6.1). We

compute x‹ via Matlab’s backslash operator, and compute }xk ´ x‹} at each iteration to

produce Fig. 6.1. The resulting convergence plot resembles a staircase because every odd

iteration produces a zero step.



Chapter 7

Contributions and future directions

7.1 Contributions

The main contributions of Part I are threefold: developing an error bounding procedure in

the Euclidean norm for SYMMLQ and CG; introducing the methods LSLQ and LNLQ for

least-squares and least-norm problems respectively; and furthering our understanding of

Krylov subspace methods, particularly methods based on SYMMLQ and CG. These results

are summarized below.

Euclidean-norm error bounds

We developed cheap estimates for the error in SYMMLQ and CG iterates, and explored the

relationship between those errors. The approach to computing these error bounds is the basis

for computing error bounds for LSLQ, LNLQ, LSQR, and CRAIG iterates. These estimates

are based on Gauss-Radau quadrature, and require the availability of an underestimate λest

of the smallest singular value of A. The main results for SYMMLQ and CG are in (3.10),

(3.12), and (3.17)–(3.18).

When A is positive semidefinite with rank r, our error estimates are upper bounds up

to convergence (under exact arithmetic). For CG, the estimate can be made tighter when

λest « λr by utilizing a delay d as described in (3.18), for an additional Opdq flops and

storage. When A is indefinite, the SYMMLQ estimate is not guaranteed to be an upper

bound, but often tracks the error closely after an initial lag.

LSLQ and LNLQ

We introduced LSLQ, an iterative method for the least-squares and least-norm problems (LS)

and (LN) with the attractive property that it ensures monotonic reduction in the Euclidean

error }x‹ ´ xk}. It completes the triad of solvers LSQR, LSMR, LSLQ for problem (LS) based

on the Golub and Kahan (1965) process. LNLQ fills a gap in the family of iterative methods

for (LN) based on the Golub and Kahan (1965) process, which ensures monotonic reduction

in the Euclidean error }y‹ ´ yk}. Although LSLQ and LNLQ are numerically equivalent to

SYMMLQ on the appropriate normal equations, they are more numerically more reliable

when A is ill-conditioned.

Further, we developed cheaply computable lower and upper bounds on the error for

LSLQ, and therefore for LSQR, using the intimate relationship between the methods and

the techniques of Chapter 3. Such an upper bound was not previously available for LSQR.

Similar upper bounds were developed for LNLQ and CRAIG.

Relationship between Krylov subspace methods

We discovered new connections between existing Krylov subspace methods and the new

methods LSLQ and LNLQ; for example, the equivalence between MINRES and LSQR for (LN)
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Table 7.1: Comparison of CG-type and LQ-type method properties for problems (L), (LN),
and (LN) respectively. In the first table, italicized results hold for indefinite systems as well.

CG SYMMLQ

}xk} Õ (S, 1983, Theorem 2.1) Õ (PS, 1975), ď CG (Theorem 3.4)
}x‹ ´ xk} Œ (HS, 1952, Theorem 6:3) Œ (PS, 1975), ě CG (Theorem 3.4)
}x‹ ´ xk}A Œ (HS, 1952, Theorem 4:3) not-monotonic
}rk} not-monotonic not-monotonic
}rk}{}xk} not-monotonic not-monotonic

S (Steihaug, 1983), HS (Hestenes and Stiefel, 1952), PS (Paige and Saunders, 1975)

LSQR LSLQ

}xk} Õ (F, 2011, Theorem 3.3.1) Õ (PS, 1975), ď LSQR (Proposition 4.1)
}x‹ ´ xk} Œ (F, 2011, Theorem 3.3.2) Œ (PS, 1975), ě LSQR (Proposition 4.1)
}r‹ ´ rk} Œ (F, 2011, Theorem 3.3.3) not-monotonic
}rk} Œ not-monotonic
}ATrk} not-monotonic not-monotonic

F (Fong, 2011), PS (Paige and Saunders, 1975)

CRAIG LNLQ

}xk} Õ (5.8) and (P, 1974) not-monotonic
}x‹ ´ xk} Œ (5.7) and (P, 1974) not-monotonic, ě CRAIG (Corollary 5.4)
}yk} Õ (5.18) and (HS, 1952) Õ (5.18) and (PS, 1975), ď CRAIG (Theorem 3.4)
}y‹ ´ yk} Œ (5.18) and (HS, 1952) Œ (5.18) and (PS, 1975), ě CRAIG (Theorem 3.4)
}rk} not-monotonic not-monotonic

HS (Hestenes and Stiefel, 1952), P (Paige, 1974), PS (Paige and Saunders, 1975)
Õ monotonically increasing Œ monotonically decreasing

(Proposition 2.2). Many important properties about Krylov subspace methods for least-

squares and least-norm problems can be understood through their equivalences with CG,

MINRES, and SYMMLQ. Fong (2011, Tables 7.1, 7.2) summarize the monotonicity of various

quantities related to the CG and MINRES, and LSQR and LSMR iterations. Table 7.1 is

similar but focuses on the CG-type and LQ-type methods presented in Chapters 3 to 5.

7.2 Future directions

Some practical matters related to the error bounding procedure are yet to be addressed, and

are left as future research directions.

Finite-precision error analysis

The error bounding methods presented in this section have assumed exact arithmetic, and

in particular, global orthogonality of the vectors generated by the Lanczos and Golub and

Kahan processes. These assumptions are clearly violated in practice, but we observed that

the error bounds did indeed remain bounds until convergence (see, e.g., Appendix B). It

is therefore likely that we can derive our error bounding procedure assuming only local

orthogonality of the basis vectors (to machine precision). To confirm, finite-precision analysis

similar to that of Strakoš and Tichý (2002) for CG error estimation in the A-norm is required

to ensure that these techniques are safe in practice.
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Adaptive eigenvalue estimates

The error bounding procedure would be more practical if the dependence on the eigenvalue

underestimate of the smallest nonzero eigenvalue of A (or singular value for (LS) and (LN))

is reduced. An underestimate may be readily available in some application, but this is not

true in general, and having the ability to refine the eigenvalue estimate throughout the

iterative method may improve the tightness of the error bounds. It may be possible to employ

techniques similar to Meurant and Tichỳ (2018), who use the smallest Ritz value from the

Lanczos process (obtained as part of the iterative method) as the eigenvalue estimate; the

main challenge is to avoid recomputation of implicit factorizations performed during the

error bounding procedure.



Part II

A Smooth Exact Penalty

Method for Nonlinearly

Constrained Optimization
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Chapter 8

Introduction

We consider a penalty-function approach to solve constrained nonlinear optimization problems

minimize
xPRn

fpxq
subject to cpxq “ 0 : y

� ď x ď u : z,

(NP)

where f : Rn Ñ R and c : Rn Ñ Rm are smooth functions (m ď n), and the n-vectors � and

u provide lower and upper bounds (possibly infinite) on x. Additionally, y P Rm is the dual

variable for the equality constraints, and z is the dual variable for the bound constraints. A

smooth exact penalty function φσ is used to eliminate the constraints cpxq “ 0. The penalty

function is the Lagrangian Lpx, yq “ fpxq ´ cpxqTy with the vector y “ yσpxq treated as a

function of x depending on a parameter σ ą 0. The penalty function depends only on the

primal variables x, so that we instead solve the problem

minimize
xPRn

φσpxq subject to � ď x ď u : z. (PP)

We purposely set z to be the Lagrange multiplier for the bound constraints for both (NP)

and (PP) because, as we show, they equal each other at a solution. If � and u are both

infinite, then (PP) is unconstrained.

The penalty function for equality-constrained problems was proposed by Fletcher (1970).

A long-held view is that Fletcher’s penalty function is not practical because it is costly to

compute (Bertsekas, 1975; Conn et al., 2000; Nocedal and Wright, 2006). In particular,

Nocedal andWright (2006, p.436) warn that “although this merit function has some interesting

theoretical properties, it has practical limitations. . . ”. Our aim is to challenge that notion

by demonstrating that the computational kernels are no more expensive than other widely

accepted methods for nonlinear optimization, such as sequential quadratic programming.

We further derive a smooth extension of the penalty function to handle bound constraints.

The penalty function is exact because local minimizers of (NP) are minimizers of (PP)

for all values of σ larger than a finite threshold σ‹. The main computational kernel for

evaluating the penalty function and its derivatives is the solution of certain structured linear

systems. If the system matrix is available explicitly, we show how to factorize it once and

re-use the factors to evaluate the penalty function and its derivatives. We also adapt the

penalty function for factorization-free optimization by solving the linear system iteratively.

This makes the penalty function particularly promising for certain problem classes, such as

PDE-constrained optimization problems when good preconditioners exist.

Part II is based on Estrin, Friedlander, Orban, and Saunders (2019a,b).
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8.1 The proposed penalty function

For (NP), we propose the penalty function

φσpxq :“ fpxq ´ cpxqTyσpxq, (8.1)

where yσpxq are Lagrange multiplier estimates defined with other items as

yσpxq :“ argminy
1
2}Apxqy ´ gpxq}2Qpxq ` σcpxqTy, gpxq :“ ∇fpxq, (8.2)

Apxq :“ ∇cpxq “
”
g1pxq ¨ ¨ ¨ gmpxq

ı
, gipxq :“ ∇cipxq, (8.3)

Yσpxq :“ ∇yσpxq. (8.4)

Note that A and Yσ are n-by-m matrices. The n-by-n diagonal matrix Qpxq has entries

Qi,ipxq :“ qipxiq, where

qipxiq :“

$
’’&
’’%

1 if �i “ ´8 and ui “ 8,

xi ´ �i ´ 1
2ωi

`
2xi ` ui ´ �i ´ ωi

2

˘2
if |ui ` �i ´ 2xi| ď ωi

2 ,

mintxi ´ �i, ui ´ xiu otherwise.

(8.5)

The diagonal of Qpxq is a smooth approximation of mintx´ �, u´ xu, where ω P Rn controls

the smoothness of the approximation (we use ωi “ mint1, 1
2 pui ´ �iqu). Note that Qpxq is

nonnegative on r�, us. When all of � and u are infinite, Qpxq “ I and we recover the penalty

function proposed by Fletcher (1970). We discuss Qpxq in more detail in Chapter 10.

We assume that (NP) satisfies some variation of the following assumptions:

(A1) f and c are twice continuously differentiable and have Lipschitz second-derivatives

(A1a), or are three-times continuously differentiable (A1b).

(A2) The linear independence constraint qualification (LICQ) is satisfied for stationary

points (A2a), or additionally for all � ă x ă u (A2b). LICQ is satisfied at x if

t∇cipxq, ej | xj P t�j , uju, i P rms, j P rnsu

is linearly independent, where ej is the jth column of the identity matrix.

(A3) Stationary points satisfy strict complementarity. If px‹, y‹, z‹q is a primal-dual solution,

exactly one of z‹
j and mintx‹

j ´ �j , uj ´ x‹
ju is zero @j P rns.

(A4) The problem is feasible. That is, there exists x such that � ď x ď u and cpxq “ 0, with

�j ă uj for all j P rns. We further assume that fixed variables have been eliminated

from the problem.

Assumption (A1b) ensures that φσ has two continuous derivatives and is typical for smooth

exact penalty functions (Bertsekas, 1982, Proposition 4.16). However, at most two derivatives

of f and c are required to implement this penalty function in practice. We typically

assume (A1b) to simplify the discussion, but this assumption can often be weakened to (A1a).

Assumption (A2b) guarantees that Yσpxq and yσpxq are uniquely defined; (A3) provides

additional regularity to ensure that the threshold penalty parameter σ‹ is well defined.
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8.2 Notation

Denote x‹ as a local stationary point of (NP), with corresponding dual solutions y‹, z‹.
Define the set of active bounds at x‹ as

Apx‹q :“ tj | xj P t�j , ujuu, (8.6)

and define the critical cones Cφpx‹, z‹q and Cpx‹, z‹q as

Cφpx‹, z‹q :“

$
’&
’%
p

ˇ̌
ˇ̌
ˇ̌
ˇ

pj “ 0 if z‹
j ‰ 0

pj ě 0 if x‹
j “ �j

pj ď 0 if x‹
j “ uj

,
/.
/-

, (8.7a)

Cpx‹, z‹q :“ �
p P Cφpx‹, z‹q ˇ̌

Apx‹qTp “ 0
(
. (8.7b)

Observe that by (A3), Cφpx‹, z‹q “ �
p | pj “ 0 if z‹

j ‰ 0
(
, so p P Cφpx‹, z‹q if and only if

p “ Qpx‹q1{2p̄ for some p̄ P Rn.

Let Hpxq “ ∇2fpxq, Hipxq “ ∇2cipxq, and define

gLpx, yq :“ gpxq ´ Apxqy, gσpxq :“ gLpx, yσpxqq, (8.8a)

HLpx, yq :“ Hpxq ´ řm
i“1yiHipxq, Hσpxq :“ HLpx, yσpxqq (8.8b)

as the gradient and Hessian of Lpx, yq evaluated at x and y or yσpxq. We also define the

matrix operators

Rpx, vq :“ ∇xrQpxqvs “ ∇x

»
—–
qipx1qv1

...

qipxnqvn

fi
ffifl “ diag

¨
˚̋

»
—–
q1
ipx1qv1

...

q1
ipxnqvn

fi
ffifl

˛
‹‚,

Spx, vq :“ ∇xrApxqTvs “ ∇x

»
—–
g1pxqT v

...

gmpxqT v

fi
ffifl “

»
—–
vTH1pxq

...

vTHmpxq

fi
ffifl ,

T px,wq :“ ∇xrApxqws “ ∇x

«
mÿ

i“1

wigipxq
ff

“
mÿ

i“1

wiHipxq,

where v P Rn, w P Rm, and T px,wq is a symmetric matrix. (We do not use R until

Chapter 10.) The operation of multiplying the adjoint of S with a vector w is described by

Spx, vqTw “ “řm
i“1wiHipxq‰

v “ T px,wqv “ T px,wqT v .

If M has full rank, the operators

PM :“ M
`
MTM

˘´1
MT and P̄M :“ I ´ P

define, respectively, orthogonal projectors onto rangepMq and its complement. We define M :

as the Moore-Penrose pseudoinverse, where M : “ pMTMq´1MT if M has full column-rank.
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8.3 Related work on penalty functions

Penalty functions have long been used to solve constrained problems by transforming them

into problems with simpler constraints that penalize violations of feasibility. We provide a

brief overview of common penalty methods and their relation to Fletcher’s penalty φσpxq.
A more detailed treatment is given by Pillo and Grippo (1984), Conn et al. (2000), and

Nocedal and Wright (2006).

The simplest example is the quadratic penalty function (Courant, 1943), which removes

the nonlinear constraints by adding 1
2ρ}cpxq}2 to the objective (for some ρ ą 0). Similarly,

bounds are replaced by 1
2ρ}px ´ �q`}2 ` 1

2ρ}pu ´ xq`}2. There are two main drawbacks:

a sequence of optimization subproblems must be solved with increasing ρ, and a feasible

solution is obtained only when ρ Ñ 8. Further, these subproblems become increasingly

ill-conditioned and difficult to solve.

An alternative to smooth non-exact penalty functions is an exact non-smooth function

such as the 1-norm penalty ρ}cpxq}1 ` ρmaxt0, � ´ x, x ´ uu (Nocedal and Wright, 2006,

§17.2). However, only non-smooth optimization methods apply, which typically exhibit

slower convergence. Maratos (1978) further noted that non-smooth merit functions may

reject steps and prevent quadratic convergence.

Another distinct approach is the class of augmented Lagrangian methods, independently

introduced by Hestenes (1969) and Powell (1969). For (NP), solvers such as LANCELOT

(Conn, Gould, and Toint, 1991, 1992) minimize a sequence of augmented Lagrangians

Lρk
px, ykq “ Lpx, ykq ` 1

2ρk}cpxq}2 over the bounds. When yk is optimal Lρk
px, ykq is exact

for sufficiently large ρk, thus avoiding the stability issues of the quadratic penalty. However,

a sequence of subproblems must be solved to drive yk to optimality.

Although these penalty functions have often been successful in practice, in light of their

drawbacks, a class of smooth exact penalty functions has been explored (Fletcher, 1970;

Pillo and Grippo, 1984; Zavala and Anitescu, 2014). With smooth exact penalty functions,

constrained optimization problems such as (NP) can be replaced by a single smooth bound-

constrained optimization problem (or unconstrained if (NP) is equality-constrained only);

provided the penalty parameter is sufficiently large. Approximate second-order methods

can be applied to obtain at least superlinear local convergence. The price for smoothness is

that a derivative of the penalty function requires a higher-order derivative from the original

problem data. That is, evaluating φσ requires ∇f and ∇c, ∇φσ requires ∇2f and ∇2ci; and

so on. In practice, the third derivative terms are typically discarded, but it can be shown

that superlinear convergence is retained.

Fletcher (1970) originally introduced a class of smooth exact penalty functions for equality-

constrained problems with 3 papers (Fletcher, 1970; Fletcher and Lill, 1971; Fletcher, 1973a).

In the equality-constrained case, φσ reduces to one of the penalty functions introduced by

Fletcher. For inequality constrained problems with � “ 0 and u “ 8, Fletcher (1973b)

proposed the penalty function

ψσpxq :“ fpxq ´ cpxqTyσpxq ´ zσpxqTx
yσpxq, zσpxq :“ argmin

yPRm, zě0

1
2}Apxqy ` z ´ gpxq}22 ` σcpxqTy, (8.9)

to be minimized without any constraints. Although it can be shown that this penalty is exact,



8.3. RELATED WORK ON PENALTY FUNCTIONS 73

it is nonsmooth because of the bound constraints on the multiplier estimates: active-set

changes on the bounds of the multiplier estimates z correspond to non-differentiable points

for the penalty function. The nonsmooth penalty then requires a minimization method for

nonsmooth problems, which often results in slower convergence.

Fletcher (1970) did not envision his method applied to large-scale problems and assumed

“the matrices in the problem are non-sparse”. Further, most developments surrounding

this method focused on linesearch schemes that require computing an explicit Hessian

approximation and using it to compute a Newton direction. One of our goals is to show how

to adapt the method to large-scale problems by taking advantage of computational advances

made since Fletcher’s proposal. Improved sparse matrix factorizations and iterative methods

for solving linear systems, and modern Newton-CG trust-region methods (Ph. L. Toint,

1981; Steihaug, 1983), play a key role in the efficient implementation of his penalty function.

Since Fletcher (1970), there has been significant work on smooth exact penalty methods

that handle inequality constraints—see for example Pillo and Grippo (1984); Di Pillo and

Grippo (1985); Boggs, Tolle, and Kearsley (1992); Zavala and Anitescu (2014). Many

approaches replace the inequality constraints with equalities using squared slacks (Bertsekas,

1982), at which point the equality constrained problem is solved via a smooth exact penalty

approach. (This is one approach for deriving φσ and (8.2); however, it is also possible to

derive it directly from the first-order KKT conditions.) The penalty function in these cases is

the augmented Lagrangian with the dual variables explicit and penalizes the gradient of the

Lagrangian (Zavala and Anitescu, 2014), or withthe dual variables expressed as a function of

the primals (Fletcher, 1970; Pillo and Grippo, 1984). Our penalty function (8.1) takes the

latter approach, but defines this parametrization differently from previous approaches; rather

than introducing additional dual variables for the bounds in (8.2), we change the norm of

the least-squares problem according to the distance from the bounds, to approximate the

complementarity conditions of first-order KKT points.



Chapter 9

The equality-constrained case

We first focus our attention on the equality-constrained case:

minimize
xPRn

fpxq subject to cpxq “ 0 : y, (NP-Eq)

that is, we let the bounds � and u be infinite. For (NP-Eq), Fletcher’s penalty function is

φσpxq :“ fpxq ´ cpxqTyσpxq, (9.1a)

yσpxq :“ argmin
y

1
2}Apxqy ´ gpxq}2 ` σcpxqTy. (9.1b)

The form of yσpxq is reminiscient of the variable-projection algorithm of Golub and Pereyra

(1973) for separable nonlinear least-squares problems.

Instead of working directly with (NP-Eq), we solve the unconstrained problem (PP). We

initially assume that (NP-Eq) satisfies (A2b) so that yσpxq and Yσpxq are uniquely defined.

We relax this assumption to (A2a) in Section 9.4.

9.1 Properties of the penalty function

We show that φσpxq naturally expresses the optimality conditions of (NP-Eq). This leads to

an explicit expressions for the threshold value of the penalty parameter σ.

9.1.1 Derivatives of the penalty function

The gradient and Hessian of φσ may be written as

∇φσpxq “ gσpxq ´ Yσpxqcpxq, (9.2a)

∇2φσpxq “ Hσpxq ´ ApxqYσpxqT ´ YσpxqApxqT ´ ∇x rYσpxqcs , (9.2b)

where the last term ∇xrYσpxqcs purposely drops the argument on c to emphasize that this

gradient is made on the product Yσpxqc with c :“ cpxq held fixed. This term involves third

derivatives of f and c, and as we shall see, it is convenient and computationally efficient to

ignore it. We leave it unexpanded.

9.1.2 Optimality conditions

The penalty function φσ is closely related to the Lagrangian Lpx, yq associated with (NP-Eq).

To make this connection clear, we define the Karush-Kuhn-Tucker (KKT) optimality condi-

tions for (NP-Eq) in terms of formulas related to φσ. From the definition of φσ and yσ and

the derivatives (9.2), the following definitions are equivalent to the KKT conditions.

74
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Definition 9.1 (First-order KKT point) The point x‹ is a first-order KKT point

of (NP-Eq) if for any σ ě 0 the following hold:

cpx‹q “ 0, (9.3a)

∇φσpx‹q “ 0. (9.3b)

The Lagrange multipliers associated with x‹ are y‹ :“ yσpx‹q.
Definition 9.2 (Second-order KKT point) The first-order KKT point x‹ satisfies the

second-order necessary KKT condition for (NP-Eq) if for any σ ě 0,

pT∇2φσpx‹qp ě 0 for all p such that Apx‹qTp “ 0,

i.e., P̄ px‹q∇2φσpx‹qP̄ px‹q ľ 0. The condition is sufficient if the inequality is strict.

The second-order KKT condition says that at x‹, φσ has nonnegative curvature along

directions in the tangent space of the constraints. However, at x‹, increasing σ will increase

curvature along the normal cone of the feasible set. We derive a threshold value for σ that

causes φσ to have nonnegative curvature at a second-order KKT point x‹, as well as a

condition on σ that ensures stationary points of φσ are primal feasible. For a given first- or

second-order KKT pair px‹, y‹q of (NP-Eq), we define P px‹q :“ PApx‹q and

σ‹ :“ 1
2λm̀ax pP px‹qHLpx‹, y‹qP px‹qq , (9.4)

where λm̀axp¨q is the maximum of the largest eigenvalue and zero.

Lemma 9.3 If cpxq P rangepApxqT q, then yσpxq satisfies

ApxqTApxqyσpxq “ ApxqTgpxq ´ σcpxq. (9.5)

Further, if Apxq has full rank, then

ApxqTApxqYσpxqT “ ApxqT rHσpxq ´ σIs ` Spx, gσpxqq. (9.6)

Proof. For any x, the necessary and sufficient optimality conditions for (9.1b) give (9.5).

By differentiating both sides of (9.5), we obtain

Spx,Apxqyσpxqq ` ApxqT “
T px, yσpxqq ` ApxqYσpxqT ‰ “ Spx, gpxqq ` ApxqT rHpxq ´ σIs.

From definitions (8.8), we obtain (9.6).

Theorem 9.4 Suppose ∇φσpx̄q “ 0 for some x̄, and let x‹
1 and x‹

2 be first- and second-

order necessary KKT points, respectively, for (NP-Eq). Let σ‹ be defined as in (9.4). Then

σ ą }Apx̄qTYσpx̄q} ùñ gpx̄q “ Apx̄qyσpx̄q, cpx̄q “ 0; (9.7a)

σ ě }Apx‹
1qYσpx‹

1qT } ùñ σ ě σ‹; (9.7b)

∇2φσpx‹
2q ľ 0 ðñ σ ě σ‹. (9.7c)

If x‹
2 is second-order sufficient, then the inequalities in (9.7c) hold strictly.
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Proof. We prove (9.7a), (9.7c), and (9.7b) in order.

Proof of (9.7a): The condition ∇φσpx̄q “ 0 implies that

gpx̄q “ Apx̄qyσpx̄q ` Yσpx̄qcpx̄q.

Substituting (9.5) evaluated at x̄ into this equation yields, after simplifying,

Apx̄qTYσpx̄qcpx̄q “ σcpx̄q.

Taking norms of both sides and using the triangle inequality gives the inequality σ}cpx̄q} ď
}Apx̄qTYσpx̄q} }cpx̄q}, which immediately implies that cpx̄q “ 0. The condition ∇φσpx̄q “ 0

then becomes gσpx̄q “ 0.

Proof of (9.7c): Because x‹
2 satisfies (9.3), we have gσpx‹

2q “ 0 and y˚ “ yσpxq, indepen-
dently of σ. It follows from (9.6), HLpx‹

2, y
‹q “ Hσpx‹

2q, and the definition of the projector

P :“ PApx‹
2q that

Apx‹
2qYσpx‹

2qT “ P pHLpx‹
2, y

‹q ´ σIq. (9.8)

We substitute this equation into (9.2b) and use the relation P ` P̄ “ I to obtain

∇2φσpx‹
2q “ P̄HLpx‹

2, y
‹qP̄ ´ PHLpx‹

2, y
‹qP ` 2σP.

Note that P̄HLpx‹
2, y

‹qP̄ ľ 0 because x‹
2 is a second-order KKT point, so σ needs to be

sufficiently large that 2σP ´ PHLpx‹
2, y

‹qP ľ 0, which is equivalent to σ ě σ‹.
Proof of (9.7b): With x‹

1 in (9.8), y˚ “ yσpx‹
1q and properties of P :“ PApx‹

1q, we have

σ ě }Apx‹
1qYσpx‹

1qT } “ }P pHLpx‹
1, y

‹q ´ σIq}
ě }P pHLpx‹

1, y
‹q ´ σIqP }

ě }PHLpx‹
1, y

‹qP } ´ σ}P } ě 2σ‹ ´ σ.

Thus, σ ě σ‹ as required.

According to (9.7c), if x‹ is a second-order KKT point, there exists a threshold value σ‹

such that φσ has nonnegative curvature for σ ě σ‹. Unfortunately, as for many exact penalty

functions, Theorem 9.4 does not discount the possibility of stationary points of φσpxq that

are not feasible points of (NP-Eq).

Consider, for example, the feasibility problem with fpxq “ 0 and cpxq “ x3 ` x ´ 2. The

only minimizer is x‹ “ 1. The penalty function

φσpxq “ σ
px3 ` x ´ 2q2

p3x2 ` 1q2

is defined everywhere and has local minimizers at x1 “ 1 (the solution) and x2 « ´1.56.

Because the stationary points are independent of σ in this case, φσ always has the spurious

local minimizer x2.

Note that we rarely encounter spuri and ous stationary points in practice, and usually

minimizers of φσpxq correspond to feasible (and therefore optimal) points of (NP-Eq).
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9.1.3 Additional quadratic penalty

In light of Theorem 9.4, it is somewhat unsatisfying that local minimizers of φσpxq might not

be local minimizers of (NP-Eq). We may add a quadratic penalty term to promote feasibility,

and under mild conditions ensure that minimizers of φσ are KKT points of (NP-Eq). Like

Fletcher (1970), we define

φσ,ρpxq :“ φσpxq ` 1
2ρ}cpxq}2 “ fpxq ´ ryσpxq ´ 1

2ρcpxqsTcpxq. (9.9)

The multiplier estimates are now shifted by the constraint violation, similar to an augmented

Lagrangian. All expressions for the derivatives follow as before with an additional term from

the quadratic penalty.

Theorem 9.5 Let S Ă Rn be a compact set, and suppose that σminpApxqq ě λ ą 0

for all x P S. Then for any σ ě 0 there exists ρ‹pσq ą 0 such that for all ρ ą ρ‹pσq, if
∇φσ,ρpx̄q “ 0 and x̄ P S, then x̄ is a first-order KKT point for (NP-Eq).

Proof. The condition ∇φσ,ρpx̄q “ 0 implies that

gpx̄q ´ Apx̄qyσpx̄q ´ Yσpx̄qcpx̄q “ ρApx̄qcpx̄q.

We premultiply with Apx̄qT and use (9.5) to obtain

`
σI ´ Apx̄qTYσpx̄q˘

cpx̄q “ ρApx̄qTApx̄qcpx̄q. (9.10)

The left-hand side of (9.10) is a continuous matrix function with finite supremum

Rpσq :“ supxPS }σI ´ ApxqTY pxq} defined over the compact set S. We now define ρ‹pσq :“
Rpσq{λ2, so that for ρ ą ρ‹pσq, if cpx̄q ‰ 0,

Rpσq}cpx̄q} ě }σI ´ Apx̄qTYσpx̄q} ¨ }cpx̄q}
ě } `

σI ´ Apx̄qTYσpx̄q˘
cpx̄q}

“ ρ}Apx̄qTApx̄qcpx̄q}
ě ρλ2}cpx̄q} ą Rpσq}cpx̄q},

which is a contradiction, implying }cpx̄q} “ 0, so that x̄ is feasible for (NP-Eq). Because

cpx̄q “ 0 and ∇φσpxq “ ∇φσ,ρpx̄q “ 0, x̄ is a first-order KKT point.

We briefly consider the case σ “ 0 and ρ ą 0. The threshold value to ensure positive

semidefiniteness of ∇2φσ,ρ at a second-order KKT pair px‹, y‹q of (NP-Eq) is

ρ‹ “ λm̀ax

`
Apx‹q:HLpx‹, y‹qApx‹q:˘

.

This threshold parameter is more difficult to interpret in terms of the original problem

data compared to σ‹ because of the pseudoinverse. The following theorem is analogous to

Theorem 9.4, but we omit the proof as it is nearly identical.

Theorem 9.6 Suppose σ “ 0 and ρ ě 0. Let ∇φσ,ρpx̄q “ 0 for some x̄, and let x‹ be a
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second-order necessary KKT point for (NP-Eq). Then

ρ ą }Apx̄q:Yσpx̄q} ùñ gpx̄q “ Apx̄qyσpx̄q, cpx̄q “ 0; (9.11a)

∇2φσpx‹q ľ 0 ðñ ρ ě ρ‹. (9.11b)

If x‹ is second-order sufficient, the inequalities in (9.11b) hold strictly.

Using ρ ą 0 can help cases where attaining feasibility is problematic for moderate values

of σ. For simplicity we let ρ “ 0 from now on, because it is trivial to evaluate φσ,ρ and its

derivatives if one can compute φσ.

9.1.4 Scale invariance

Note that φσ is invariant under diagonal scaling of the constraints, i.e., if cpxq is replaced

by Dcpxq for some diagonal matrix D, then φσ is unchanged. It is an attractive property

that φσ and σ‹ are independent of some model formulation choices, like the Lagrangian.

However, like the augmented Lagrangian, φσ,ρ with ρ ą 0 is not scale invariant because of

the quadratic term; thus, constraint scaling is an important consideration if φσ,ρ is used.

9.2 Evaluating the penalty function

The main challenge in evaluating φσ and its gradient is solving the shifted least-squares

problem (9.1b) in order to compute yσpxq, and computing the gradient Yσpxq. Below we

show it is possible to compute products Yσpxqv and YσpxqTu by solving structured linear

systems involving the matrix used to compute yσpxq. If direct methods are used, a single

factorization that gives the solution (9.1b) is sufficient for all products.

For this section, it is convenient to drop the arguments on the various functions and

assume they are all evaluated at a point x for some parameter σ. For example, yσ “
yσpxq, A “ Apxq, Yσ “ Yσpxq, Hσ “ Hσpxq, Sσ “ Spx, gσpxqq, etc. We also express (9.6)

using the shorthand notation

ATAY T
σ “ AT rHσ ´ σIs ` Sσ. (9.12)

We first describe how to compute products Yσu and Y T
σ v, then describe how to put those

pieces together to evaluate the penalty function and its derivatives.

9.2.1 Computing the product Yσu

For a given u P Rm, we premultiply (9.12) by uTpATAq´1 to obtain

Yσu “ rHσ ´ σIsApATAq´1u ` ST
σ pATAq´1u

“ rHσ ´ σIsv ´ ST
σ w,

where we define w “ ´pATAq´1u and v “ ´Aw. Observe that w and v solve the system

«
I A

AT

ff «
v

w

ff
“

«
0

u

ff
. (9.13)
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Algorithm 6 formalizes the process.

Algorithm 6 Computing the matrix-vector product Yσu

1: pv, wq Ð solution of (9.13)
2: return rHσ ´ σIsv ´ ST

σw

9.2.2 Computing the product YT
σv

Multiplying both sides of (9.12) on the right by v gives

ATApY T
σ vq “ AT prHσ ´ σIsvq ` pSσvq.

The required product u “ Y T
σ v is in the solution of the system

«
I A

AT

ff «
r

u

ff
“

«
rHσ ´ σIsv

´Sσv

ff
. (9.14)

Algorithm 7 formalizes the process.

Algorithm 7 Computing the matrix-vector product Y T
σ v

1: Evaluate rHσ ´ σIsv and Sσv
2: pr, uq Ð solution of (9.14)
3: return u

9.2.3 Computing multipliers and first derivatives

The multiplier estimates yσ can be obtained from the optimality conditions for (9.1b):

«
I A

AT

ff «
gσ
yσ

ff
“

«
g

σc

ff
, (9.15)

which also gives gσ. Algorithm 6 then gives Yσc and hence ∇φσ in (9.2a).

Observe that we can re-order operations to take advantage of specialized solvers. Consider

the pair of systems

«
I A

AT

ff «
d

y

ff
“

«
g

0

ff
and

«
I A

AT

ff «
v

w

ff
“

«
0

c

ff
. (9.16)

We have gσ “ d ` σv and yσ “ y ` σw, while the computation of Yσc is unchanged. The

systems in (9.16) correspond to pure least-squares and least-norm problems respectively.

Specially tailored solvers may be used to improve efficiency or accuracy. This is further

explored in Section 9.2.5.
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9.2.4 Computing second derivatives

We can approximate ∇2φσ using (9.2b) and (9.6) in two ways according to

∇2φσ « B1 :“ Hσ ´ AY T
σ ´ YσA

T (9.17a)

“ Hσ ´ rPHσ ´ Hσ
rP ` 2σ rP ´ ApATAq´1Sσ ´ ST

σ pATAq´1A

∇2φσ « B2 :“ Hσ ´ rPHσ ´ Hσ
rP ` 2σ rP , (9.17b)

where rP “ ApATAq´1AT. Note that rP “ PA here, but this changes when regularization

is used; see Section 9.4. The first approximation ignores ∇rYσpxqcs in (9.2b), while the

second ignores Sσ “ Spx, gσpxqq. Because we expect cpxq Ñ 0 and gσpxq Ñ 0, B1 and B2

are similar to Gauss-Newton approximations to ∇2φσpxq, and as Fletcher (1973a, Theorem

2) shows, using them in a Newton-like scheme is sufficient for quadratic convergence if (A1a)

is satisfied.

Because rP is a projection on rangepAq, we can compute products rPu by solving

«
I A

AT

ff «
p

q

ff
“

«
u

0

ff
(9.18)

and setting rPu Ð u ´ p. Note that with regularization, the p2, 2q block of this system is

modified and rP is no longer a projection; see Section 9.4.

The approximations (9.17a) and (9.17b) trade Hessian accuracy for computational effi-

ciency. If the operator Spx, vq is not immediately available (or not efficiently implemented),

it may be avoided. Using B2 requires only least-square solves, which allows us to apply

specialized solvers (e.g., LSQR (Paige and Saunders, 1982a)), which cannot be done when

products with Y T
σ are required.

9.2.5 Solving the augmented linear system

We discuss some approaches to solving linear systems of the form

K
«
p

q

ff
“

«
w

z

ff
, K :“

«
I A

AT ´δ2I

ff
, (9.19)

which have appeared repeatedly in this section. Although δ “ 0 so far, we now look ahead to

regularized systems because they require only minor modification. Let pp‹, q‹q solve (9.19).

Define Aδ :“
”
AT δI

ıT
when δ ą 0; otherwise Aδ :“ A.

Conceptually it is not important how this system is solved as long as it is with sufficient

accuracy. However, from a practical point of view, this is the most computationally intensive

part of using φσ. Different solution methods have different advantages and limitations,

depending on the size and sparsity of A, whether A is available explicitly, and the prescribed

solution accuracy. One option is to use direct methods: factorize K once per iteration and

use the factors to solve with each right-hand side. Several factorization-based approaches

can be employed with various advantages and drawbacks—see Appendix C for details.

In line with the goal of creating a factorization-free solver for minimizing φσ, we discuss

iterative methods for solving (9.19), particularly Krylov subspace solvers. This approach has
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two potential advantages: if a good preconditioner P « ATA is available, solving (9.19) could

be much more efficient than with direct methods, and we can take advantage of solvers using

inexact function values, gradients, or Hessian products by solving (9.19) approximately.

When z “ 0, (9.19) is a (regularized) least-squares problem: minq }Aδq ´ wδ}. We

advocate for LSQR (Paige and Saunders, 1982a), which ensures that the error in iterates pk
and qk decreases monotonically at every iteration. Furthermore, we can obtain upper bounds

on }p‹ ´ pk} and }q‹ ´ qk} using LSLQ (Chapter 4) when an understimate of σminpAP´1{2q
is available. (Note that the error norm for q depends on the preconditioner.)

When w “ 0, (9.19) is a least-norm problem: minp }p} s.t. AT
δ p “ z. We then advocate

for CRAIG (Craig, 1955) because it minimizes the error in the Krylov subspace. Given the

same underestimate of σminpAP´1{2q, we use LNLQ (Chapter 5) to bound the error norms

for p and q.

Recall that φσ and ∇φσ can be computed by solving only least-squares and least-norm

problems (only one of w and z is nonzero at a time). Furthermore, if (9.17b) is used, the

remaining solves with K are equivalent to least-squares solves. If both w and z are nonzero

(for products with Y T
σ ), we can shift the right-hand side of (9.19) and solve the system

K
«
p̄

q

ff
“

«
0

z ´ ATw

ff
, p “ p̄ ` w.

Thus, (9.19) can in general be solved by CRAIG or LNLQ.

Although K is symmetric indefinite, we do not recommend methods such as MINRES

or SYMMLQ (Paige and Saunders, 1975). Orban and Arioli (2017) show that if full-space

methods are applied directly to K then every other iteration of the solver makes little progress.

If solves with P can only be performed approximately, it may be necessary to apply flexible

variants of nonsymmetric full-space methods to K, such as GMRES (Saad and Schultz, 1986).

9.3 Maintaining explicit constraints

We consider a variation of (NP) where some of the constraints cpxq are easy to maintain

explicitly; for example, some are linear. We can then maintain feasibility for a subset of

the constraints, the contours of the φσ are simplified, and as we show soon, the threshold

penalty parameter σ‹ is decreased. We discuss the case where some of the constraints are

linear, but it is possible to extend the theory to any type of constraint.

Consider the problem
minimize

xPRn
fpxq,

subject to cpxq “ 0 : y,

BTx “ d : w,

(NP-EXP)

where we have nonlinear constraints cpxq P Rm1 and linear constraints BTx “ d with

B P Rnˆm2 , so that m1 ` m2 “ m. The respective dual variables for the constraints are

y P Rm1 and w P Rm2 . We assume that (NP-EXP) at least satisfies (A2a), so that B has
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full column rank. We define the penalty function problem to be

minimize
xPRn

φσpxq :“ fpxq ´ cpxqT yσpxq subject to BTx “ d,

«
yσpxq
wσpxq

ff
:“ argmin

y,w

1
2}Apxqy ` Bw ´ gpxq}2 ` σ

«
cpxq

BTx ´ d

ffT «
y

w

ff
,

(9.20)

which is similar to (PP) except the linear constraints are not penalized in φσpxq, and the

penalty function is minimized subject to the linear constraints. A possibility is to penalize the

linear constraints as well, while keeping the linear constraints explicit; however, penalizing

the linear constraints in φσpxq introduces additional nonlinearity, and if all constraints are

linear, it makes sense that the penalty function reduces to (NP-EXP).

9.3.1 Properties of the modified penalty function

DefineWσpxq :“ ∇wσpxq P Rnˆm2 , and Cpxq :“
”
Apxq B

ı
as the Jacobian of all constraints.

The operators gσpxq, Hσpxq, Spx, vq and T px,wq are still defined over all constraints, not

just the nonlinear ones, and so they act on Cpxq instead of Apxq. Define

gyσpxq “ gpxq ´ Apxqyσpxq (9.21)

as the gradient of the partial Lagrangian with respect to the nonlinear constraints cpxq only

(note that the linear constraints do not affect Hσ). The gradient and Hessian of the penalty

function are the same as (9.2), except that gσpxq is replaced by gyσpxq in (9.2a).

We restate the optimality conditions for (NP-EXP) in terms of the penalty function.

Definition 9.7 (First-order KKT point) The point x‹ is a first-order KKT point of

(NP-EXP) if there exists a Lagrange multiplier w‹ P Rm2 for the linear constraints such that

for any σ ě 0 the following hold:

cpx‹q “ 0, (9.22a)

BTx‹ “ d, (9.22b)

∇φσpx‹q “ Bw‹. (9.22c)

The elements of y‹ :“ yσpx‹q and w‹ :“ wσpx‹q are the Lagrange multipliers of (NP-EXP)

associated with x‹.

Definition 9.8 (Second-order KKT point) The first-order KKT point x‹ satisfies the

second-order necessary KKT condition for (NP-EXP) if for any σ ě 0,

pT∇2φσpx‹qp ě 0 for all p such that Cpx‹qTp “ 0. (9.23)

The condition is sufficient if the above inequality is strict.

For a given first- or second-order KKT solution px‹, y‹q, the threshold penalty parameter

becomes

σ‹ :“ 1
2λm̀ax

`
P̄BPCHLpx‹, y‹qPC P̄B

˘ ď 1
2λm̀ax pPCHLpx‹, y‹qPCq . (9.24)
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Inequality (9.24) holds because P̄B is an orthogonal projector. If the linear constraints were

not explicit, the threshold value would be the right-most term in (9.24). Intuitively, the

threshold penalty value decreases by the amount of the top eigenspace of the Lagrangian

Hessian that lies in the range of BT , because positive semidefiniteness of ∇2φσpx‹q along

that space is guaranteed by Definition 9.8.

The following result is analogous to Theorem 9.4 with the smaller threshold value.

Theorem 9.9 Suppose x̄ is a first-order necessary KKT point for (9.20):

BTx̄ “ d,

∇φσpx̄q “ Bw‹,

and let x‹
1 and x‹

2 be first- and second-order necessary KKT points respectively for (NP-EXP).

Then for all p ‰ 0 such that BTp “ 0,

σ ą }Apx̄qT P̄BYσpx̄q} ùñ gpx̄q “ Apx̄qyσpx̄q ` Bwσpx̄q, cpx̄q “ 0; (9.25a)

σ ě }P̄BApx‹
1qYσpx‹

1qT } ùñ σ ě σ‹; (9.25b)

pT∇2φσpx‹
2qp ľ 0 ðñ σ ě σ‹. (9.25c)

If x‹
2 is second-order sufficient, the inequalities in (9.25c) hold strictly.

Proof. We prove (9.25a), (9.25c) and (9.25b) in order. Observe that the multiplier

estimates yσpxq and wσpxq satisfy

CpxqTCpxq
«
yσpxq
wσpxq

ff
“ CpxqT gpxq ´ σ

«
cpxq

BTx ´ d

ff
. (9.26)

Proof of (9.25a): If x̄ is a first-order KKT point for (9.20), then

Bw‹ “ gpx̄q ´ Apx̄qyσpx̄q ´ Yσpx̄qcpx̄q,

and by multiplying both sides by Cpx̄qT and using (9.26) we have

«
Apx̄qTBw‹

BTBw‹

ff
“ σ

«
cpx̄q
0

ff
`

«
Apx̄qTBwσpx̄q
BTBwσpx̄q

ff
´

«
Apx̄qTYσpx̄qcpx̄q
BTYσpx̄qcpx̄q

ff
,

so that wσpx̄q “ w‹ ` pBTBq´1BTYσpx̄qcpx̄q. Substituting wσpx̄q into the first block of

equations and rearranging gives

Apx̄qP̄BYσpx̄qcpx̄q “ σcpx̄q.

The triangle inequality gives σ}cpx̄q} ď }Apx̄qT P̄BYσpx̄q}}cpx̄q}, implying cpx̄q “ 0. Then

wσpx̄q “ w‹ and gσpx̄q “ 0, so x̄ is a first-order KKT point for (NP-EXP).

Proof of (9.25c): As in the proof of (9.7c), we differentiate (9.26) to obtain

CpxqTCpxq
«
YσpxqT
WσpxqT

ff
“ CpxqT rHσpxq ´ σIs ` Spx, gσpxqq. (9.27)
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Because x‹
2 satisfies first-order conditions (9.22), gσpxq “ 0 and so for PC “ PCpxq,

Apx‹
2qYσpx‹

2qT ` BWσpx‹
2qT “ PCrHσpx‹

2q ´ σIs. (9.28)

Substituting into (9.2b) and using Hσpx‹
2q “ HLpx‹

2, y
‹q and PC ` P̄C “ I gives

∇2φσpx‹
2q “ P̄CHLpx‹

2, y
‹qP̄C ´ PCHLpx‹

2, y
‹qPC ` 2σPC ´ BWσpxqT ´ WσpxqBT .

Because BT p “ 0, we can write p “ P̄B p̄ and hence

0 ď pT∇2φσpx‹
2qp

ðñ 0 ĺ P̄BP̄CHLpx‹
2, y

‹qP̄C P̄B ´ P̄BPCHLpx‹
2, y

‹qPC P̄B ` 2σP̄BPC P̄B ,

which is equivalent to σ ě σ‹.

Proof of (9.25b). With x‹
1 in (9.28) and again using properties of PC and P̄B ,

σ ě }P̄BApx‹
1qYσpx̄1q} “ }P̄BPCpHLpx‹

1, y
‹q ´ σIq}

ě }P̄BPCpHLpx‹
1, y

‹q ´ σIqPC P̄B}
ě }P̄BPCHLpx‹

1, y
‹qPC P̄B} ´ }σPC P̄B}

ě 2σ‹ ´ σ.

Thus σ ě σ‹ as required.

9.3.2 Evaluating the penalty function and derivatives

We again drop the arguments on functions and assume they are evaluated at x for some σ.

The multipliers for evaluating the penalty function are obtained by solving

»
–

I A B

AT

BT

fi
fl

»
–
gσ

yσ

wσ

fi
fl “

»
–

g

σc

σpBx ´ dq

fi
fl. (9.29)

To compute the gradient and Hessian products, we use the identity

CTC

«
Y T
σ

WT
σ

ff
“ CTrHσ ´ σIs ` Sσ (9.30)

to obtain the necessary products with Yσ and Y T
σ . Observe that

Yσu “
”
Yσ Wσ

ı «
u

0

ff
, Y T

σ v “
”
I 0

ı «
Y T
σ

WT
σ

ff
v,

so that Algorithm 6 and Algorithm 7 can be applied.

Note that to compute ∇φσpxq, gyσ is not available directly from the solution to (9.29)

and must be computed explicitly using (9.21).
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Approximate products with ∇2φσ can be computed via

∇2φσ « B1 :“ Hσ ´ AY T ´ Y AT (9.31)

“ Hσ ´
”
A 0

ı
pCTCq´1CTpHσ ´ σIq ´

”
A 0

ı
pCTCq´1Sσ

´ pHσ ´ σIqCpCTCq´1

«
AT

0

ff
´ SσpCTCq´1

«
AT

0

ff

« B2 :“ Hσ ´
”
A 0

ı
C:pHσ ´ σIq ´ pHσ ´ σIq `

C:˘T
«
AT

0

ff
. (9.32)

For products with the pseudoinverse and its transpose, we can compute

«
u1

u2

ff
“ pCTCq´1CTv, v “ CpCTCq´1

«
u1

u2

ff

by solving the respective block systems

»
–

I A B

AT

BT

fi
fl

»
–

t

u1

u2

fi
fl “

»
–
v

0

0

fi
fl ,

»
–

I A B

AT

BT

fi
fl

»
–
v

t1

t2

fi
fl “

»
–

0

´u1

´u2

fi
fl. (9.33)

Thus we can obtain the same types of Hessian approximations with two augmented system

solves, except in B2 they now correspond to both least-squares and least-norm solves instead

of only projections.

9.4 Regularization

Even if Apx‹q has full column rank, Apxq might have low column rank or small singular

values away from the solution. If Apxq is rank-deficient and cpxq is not in the range of ApxqT ,
then yσpxq and φσpxq are undefined. Even if Apxq has full column rank but is close to

rank-deficiency, the linear systems (9.13)–(9.15) and (9.18) are ill-conditioned, threatening

inaccurate solutions and impeded convergence.

We modify φσ by changing the definition of the multiplier estimates in (9.1b) to solve a

regularized shifted least-squares problem with regularization parameter δ ą 0:

φσpx; δq :“ fpxq ´ cpxqTyσpx; δq (9.34a)

yσpx; δq :“ argmin
y

1
2}Apxqy ´ gpxq}22 ` σcpxqTy ` 1

2δ
2}y}22. (9.34b)

This modification is similar to the exact penalty function of Di Pillo and Grippo (1986). The

regularization term 1
2δ

2}y}22 ensures that the multiplier estimate yσpx; δq is always defined

even when Apxq is rank-deficient. The only computational change is that the p2, 2q block of

the matrices in (9.13)–(9.15) and (9.18) is now ´δ2I.

Besides improving condpKq, δ ą 0 has the advantage of making K symmetric quasi-

definite. Vanderbei (1995) shows that any symmetric permutation of such a matrix possesses

an LDLT factorization with L unit lower triangular and D diagonal indefinite. Result 2
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of Gill, Saunders, and Shinnerl (1996) implies that the factorization is stable as long as δ

is sufficiently far from zero. Various authors propose regularized matrices of this type to

stabilize optimization methods in the presence of degeneracy. In particular, Wright (1998)

accompanies his discussion with an update scheme for δ that guarantees fast asymptotic

convergence.

We continue to assume that (NP) satisfies (A1b), but we now replace (A2b) by (A2a).

For a given isolated local minimum x‹ of (NP), σ sufficiently large, and δ sufficiently small,

we define

xpδq :“ argminx }x ´ x‹} such that x is a local-min of φσpx; δq
for use as an analytical tool in the upcoming discussion.

Note that for δ ą 0, we would not expect that xpδq “ x‹, but we want to ensure that

xpδq Ñ x‹ as δ Ñ 0. Note that for x such that yσpxq is defined,

yσpx; δq “ pApxqTApxq ` δ2Iq´1ApxqTApxqyσpxq
“ yσpxq ´ δ2pApxqTApxq ` δ2Iq´1yσpxq.

Therefore for x such that φσpxq is defined, we can write the regularized penalty function as

a perturbation of the unregularized one:

φσpx; δq “ fpxq ´ cpxqTyσpx; δq
“ fpxq ´ cpxqTyσpxq ` δ2cpxqTpApxqTApxq ` δ2Iq´1yσpxq
“ φσpxq ` δ2Pδpxq, (9.35)

where Pδpxq “ cpxqTpApxqTApxq ` δ2Iq´1yσpxq. By (A1b), Pδ is bounded and has at least

two continuous derivatives in a neighbourhood of x‹.

Theorem 9.10 Suppose (A1b) and (A2a) are satisfied, x‹ is a second-order KKT point

for (NP), and ∇2φσpx‹q ą 0. Then there exists δ̄ ą 0 such that xpδq is a C1 function for

0 ď δ ă δ̄. In particular, }xpδq ´ x‹} “ Opδq.

Proof. The theorem follows from the Implicit Function Theorem (Ortega and Rheinboldt,

2000, Theorem 5.2.4) applied to ∇φσpx; δq “ 0.

An option to recover x‹ using φσpx; δq is to minimize a sequence of problems defined

by xk`1 “ argminx φσpx; δkq with δk Ñ 0, using xk to warm-start the next subproblem.

However, we show that it is possible to decrease δ within a single problem, while retaining

fast local convergence.

To keep results independent of the minimization algorithm being used, for a family of

functions F we define G : F ˆ Rn Ñ Rn such that for f P F and an iterate x, Gpf, xq
computes an update direction. For example, if F “ C2, we can represent Newton’s method

with Gpf, xq “ ´Hpxq´1gpxq, where gpxq “ ∇fpxq and Hpxq “ ∇2fpxq. Define νpδq as a

function such that for repeated applications, νkpδq Ñ 0 as k Ñ 8 at a chosen rate; for

example, for a quadratic rate, we let νpδq “ δ2.

Algorithm 8 describes how to adaptively update δ each iteration. In order to analyze

it, we formalize the notions of rates of convergence using definitions equivalent to those of

Ortega and Rheinboldt (2000, §9).
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Algorithm 8 Minimization of the regularized penalty function φσpx, δq with δ Ñ 0

1: Choose x1, δ0
2: for k “ 1, 2, . . . do
3: Set δk Ð max tmin t}∇φσpxk; δk´1q}, δk´1u , νpδk´1qu (9.36)
4: pk Ð G pφσp¨, δkq, xkq
5: xk`1 Ð xk ` pk
6: end for

Definition 9.11 We say that xk Ñ x‹ with order at least τ ą 1 if there exists M ą 0

such that, for all sufficiently large k, }xk`1 ´ x‹} ď M}xk ´ x‹}τ . We say that xk Ñ x‹

with R-order at least τ ą 1 if there exists a sequence αk such that, for all sufficiently large k,

}xk ´ x‹} ď αk, αk Ñ 0 with order at least τ .

We first show that any minimization algorithm achieving a certain local rate of convergence

can be regarded as inexact Newton (Dembo et al., 1982).

Lemma 9.12 Let fpxq be a C2 function with local minimum x‹ and Hpx‹q ą 0. Suppose

we minimize f according to

xk`1 “ xk ` pk, pk “ Gpf, xkq, (9.37)

such that xk Ñ x‹ with order at least τ P p1, 2s. Then in some neighborhood of x‹, the update

procedure Gpf, xq is equivalent to the inexact-Newton iteration

xk`1 Ð xk ` pk, Hpxkqpk “ ´gpxkq ` rk, }rk} “ Op}gpxkq}τ q. (9.38)

Proof. There exists a neighborhood NN px‹q such that for any xN
0 P NN px‹q, the Newton

update xN
k`1 “ xN

k ` pNk with HpxN
k qpNk “ ´gpxN

k q is quadratically convergent:

}x‹ ´ xN
k`1} ď M1}x‹ ´ xN

k }2, xk P NN px‹q.

Similarly let NGpx‹q be the neighborhood where order τ convergence is obtained for (9.37)

with constant M2. Let B�px‹q “ tx | }x‹ ´ x} ď �u. Choose � ď mintM´1
2 , 1u such that

B�px‹q Ď NN X NG, and observe that if x0 P B�px‹q, then xk P B�px‹q for all k because

}x‹ ´ xk} is monotonically decreasing. By continuity of Hpxq, there exists M3 ą 0 such that

}Hpxq} ď M3 for all B�px‹q. Then for xk P B�px‹q,

}rk} “ }Hpxkqpk ` gpxkq} “ }Hpxkqpxk`1 ´ xk ´ pNk q}
ď }Hpxkq}}xk`1 ´ x‹ ` x‹ ´ xN

k`1}
ď M3p}xk`1 ´ x‹} ` }xN

k`1 ´ x‹}q
ď M3pM1 ` M2q}xk ´ x‹}τ ,

Because f P C2, there exists a constant M4 such that }xk ´ x‹} ď M4}gpxkq} for xk P
NGpx‹q XNN px‹q. Therefore }rk} ď M4M3pM1 `M2q}gpxkq}τ , which is the inexact-Newton

method, convergent with order τ .
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Note that Lemma 9.12 can be modified to accommodate any form of superlinear convergence,

as long as }rk} converges at the same rate as xk Ñ x‹.

Theorem 9.13 Suppose that (A1b) and (A2a) are satisfied, x‹ is a second-order KKT

point for (NP), ∇2φσpx‹q ą 0, and there exists δ̄ and an open set Bpx‹q containing x‹ such

that for rx0 P Bpx‹q and δ ď δ̄, the sequence defined by rxk`1 “ rxk ` Gpφσp¨; δq, rxkq converges

quadratically to xpδq:
}xpδq ´ rxk`1} ď Mδ}xpδq ´ rxk}2.

Further suppose that for δ ď δ̄, Mδ ď M is uniformly bounded. Then there exists an open

set, B1px‹q that contains x‹, and δ1 ą 0 such that if x P B1px‹q, δ ď δ1 and xk Ñ x‹ for xk

defined by Algorithm 8 (with νpδq “ δ2), then xk Ñ x‹ R-quadratically.

The proof is in Appendix D. Although there are many technical assumptions, the takeaway

message is that we need only minimize φσp¨; δkq until }∇φσ} “ Opδkq, because under typical

smoothness assumptions we have that }xpδq ´ x‹} “ Opδq for δ sufficiently small. Decreasing

δ at the same rate as the local convergence rate of the method on a fixed problem should

not perturb φσpx; δq too much, therefore allowing for significant progress on the perturbed

problem in few steps. Within the basin of convergence and for a fixed δ ą 0, an optimization

method would achieve the same local convergence rate that it would have with δ “ 0 fixed.

Theorem 9.13 can be generalized to superlinear rates of convergence using a similar proof.

As long as νp¨q drives δ Ñ 0 as fast as the underlying algorithm would locally converge for

fixed δ, local convergence of the entire regularized algorithm is unchanged.

9.5 Inexact evaluation of the penalty function

We discuss the effects of solving (9.19) approximately, and thus evaluating φσ and its

derivatives inexactly. Various optimization solvers can utilize inexact function values and

derivatives while ensuring global convergence and certain local convergence rates, provided

the user can compute relevant quantities to a prescribed accuracy. For example, Conn et al.

(2000, §8–9) describe conditions on the inexactness of model and gradient evaluations to

ensure convergence, and Heinkenschloss and Ridzal (2014) describe an inexact trust-region

SQP solver for PDE-constrained optimization using inexact function values and gradients.

We focus on inexactness within trust-region methods for optimizing φσ.

The accuracy and computational cost in the evaluation of φσ and its derivatives depends

on the accuracy of the solves of (9.19). If the cost to solve (9.19) depends on solution

accuracy (e.g., with iterative linear solvers), it is advantageous to consider optimization

solvers that use inexact computations, especially for large-scale problems.

Let S Ď Rn be a compact set. In this section, we use rφσpxq, ∇rφσpxq, etc. to distinguish

the inexact quantities from their exact counterparts. We also drop the arguments from

operators as in Section 9.2. We consider three quantities that are computed inexactly: gσ,

φσ and ∇φσ. For given error tolerances ηi, we are interested in exploring termination criteria

for solving (9.19) to ensure that the following conditions hold for all x P S:
ˇ̌
φσ ´ rφσ

ˇ̌ ď Mη1, (9.39a)

}∇φσ ´ ∇rφσ} ď Mη2, (9.39b)



9.5. INEXACT EVALUATION OF THE PENALTY FUNCTION 89

}gσ ´ rgσ} ď Mη3, (9.39c)

whereM ą 0 is some fixed constant (which may or may not be known). Kouri, Heinkenschloss,

Ridzal, and van Bloemen Waanders (2014) give a trust-region method using inexact objective

value and gradient information that guarantees global convergence provided (9.39a)–(9.39b)

hold without requiring that M be known a priori. We may compare this to the conditions of

Conn et al. (2000, §8.4, §10.6), which require more stringent conditions on (9.39a)–(9.39b).

They require that η2 “ }∇rφσ} and that M be known and fixed according to parameters in

the trust-region method.

This leads us to the following proposition, which allows us to bound the residuals of

(9.13) and (9.15) to ensure (9.39).

Proposition 9.14 Let S be a compact set, and suppose that σminpApxqq ě λ ą 0 for all

x P S. Then for x P S, if

}r1} “
›››››K

«
rgσ
ryσ

ff
´

«
g

σc

ff››››› ď mint1, }c}´1u ¨ mintη1, η3u, (9.40)

then (9.39a) and (9.39c) hold for some constant M . Also, if

}r1} ď η2 and }r2} “
›››››K

«
rv
rw

ff
´

«
0

c

ff››››› ď mint1, η2u, (9.41)

then (9.39b) holds for some (perhaps different) constant M .

Proof. Because S is compact and λ ą 0, there exists λ̄ ą 0 such that }K}, }K´1} ď λ̄ for

all x P S. Thus, (9.39c) follows directly from (9.15) and (9.40) with M “ λ̄. Similarly,

ˇ̌
φσ ´ rφσ

ˇ̌ “ ˇ̌
cT pyσ ´ Ăyσqˇ̌ ď }c} }yσ ´ Ăyσ} ď λ̄η1,

and (9.39a) holds with M “ λ̄. We apply a similar analysis to ensure that (9.39b) holds.

Define the vector h P Rm such that hi “ }Hi}. Define v, w as the solutions to (9.41) for

r2 “ 0, so that from (9.41) we have

}∇φσ ´ ∇rφσ} ď }gσ ´ rgσ} ` }Yσc ´ rYσc}
ď λ̄η2 ` }pHσ ´ σIqv ´ ST

σw ´ p rHσ ´ σIqrv ` rST
σ rw}

ď λ̄η2 ` σ}v ´ rv} ` }Hσv ´ rHσrv} ` }ST
σ w ´ rST

σ rw}
ď `

λ̄ ` σλ̄
˘
η2 ` }Hσpv ´ rvq ` pHσ ´ rHσqrv}

` }ST
σpw ´ rwq ` pSσ ´ rSσqT rw}

ď `
λ̄ ` σλ̄

˘
η2 ` }Hσ}}v ´ rv} ` }

mÿ

i“1

ppyσqi ´ pryσqiqHi}}rv}

` }Sσ}}w ´ rw} ` }
mÿ

i“1

rwiHi}}gσ ´ rgσ}

ď `
λ̄ ` σλ̄ ` }Hσ}λ̄ ` λ̄}rv}}h} ` }Sσ}λ̄ ` } rw}}h}λ̄˘

η2.

Note that }Hσ}, }h}, }Sσ}, } rw} and }rv} are bounded uniformly in S.
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In the absence of additional information, using (9.39) with unknown M may be the only

way to take advantage of inexact computations, because computing exact constants (such as

the norms K or the various operators above) is not practical. In some cases the bounds (9.39)

are relative, e.g., η2 “ mint}∇rφσ},Δu for a certain Δ ą 0. It may then be necessary to

compute }∇rφσ} and refine the solutions of (9.15) and (9.13) until they satisfy (9.40)–(9.41).

However, given the expense of applying these operators, it may be more practical to use a

nominal relative tolerance, as in the numerical experiments of Chapter 11.

We include a (trivial) improvement to Proposition 9.14 that satisfies (9.39a) and (9.39c)

with M “ 1, given additional spectral information about A. If we solve (9.15) by solving

«
I A

AT 0

ff «
Δgσ
yσ

ff
“

«
0

σc ´ ATg

ff
, gσ “ g ` Δgσ,

we can use LNLQ (Chapter 5), a Krylov subspace method for such systems, which ensures

that }Δgσ ´Δrgpjq
σ } and }yσ ´rypjq

σ } are monotonic, where Δrgpjq
σ , rypjq

σ are the jth LNLQ iterates.

Given λ ą 0 such that σminpAq ě λ, LNLQ can compute cheap upper-bounds on }Δgσ´Δrgpjq
σ }

and }yσ ´rypjq
σ }, allowing us to terminate the solve when }Δgσ ´ ĄΔgσ} ď η2} ĄΔgσ `g} “ η2}rgσ}

and }yσ ´ ryσ} ď mint1, }c}´1uη1. Typically, termination criteria for the optimization solver

will include a condition that }gσ} ď �d to determine approximate local minimizers to (NP).

For such cases, we can instead require that }rgσ} ď 1
1`η2

�d, because then

}gσ} ď }gσ ´ rgσ} ` }rgσ} ď p1 ` η2q}rgσ} ď �d.

Similarly, we have ˇ̌
φσ ´ rφσ

ˇ̌ ď }c}}yσ ´ ryσ} ď η1,

which now satisfies (9.39a) with M “ 1.

Although finding suitable λ may be difficult in general, it is trivially available in some

cases because of the way K is preconditioned (for an example, see Chapter 11). However, a

complication is that if LNLQ is used with a right-preconditioner P « ATA, then }yσ ´ ryσ}P is

monotonic and LNLQ provides bounds on the preconditioned norm instead of the Euclidean

norm. If }P´1} can be bounded, then the bound }yσ ´ ryσ} ď }yσ ´ ryσ}P}P´1} can be used.



Chapter 10

The inequality-constrained case

We now consider the general problem (NP) under assumptions (A1b) and (A2b) in particular.

Recall that the penalty function (defined in (8.1)) is

φσpxq :“ fpxq ´ cpxqTyσpxq
yσpxq :“ argminy

1
2}Apxqy ´ gpxq}2Qpxq ` σcpxqTy,

Notice that the multiplier estimate (9.1b) for equality-constrained problems differs from the

above by scaling the least-squares problem with Qpxq. The diagonal entries of the scaling

matrix Qpxq (defined in (8.5)) are smooth approximations of the complementarity function

qpxq « mintx ´ �, u ´ xu; see Chen (2000). Fig. 10.1 plots qpxq with finite � and u.

The definition of yσpxq (8.2) can be interpreted as a smooth approximation of the

complementarity conditions in the first-order KKT conditions (10.2d)–(10.2f) below. The

role of Qpxq is therefore to ensure that the gradient of the Lagrangian is zero only at

indices corresponding to inactive bounds. Several researchers have provided approaches

for dealing with complementarity constraints in a similar fashion by introducing nonlinear

constraints—see for example Anitescu (2000) and Leyffer (2006).

For a scalar x, the derivative of qpxq is

q1pxq “

$
’’’’&
’’’’%

0 if � “ ´8 and u “ 8,

1 ´ 2
ω

`
2x ` u ´ � ´ ω

2

˘
else if |u ` � ´ 2x| ď ω

2 ,

1 else if x ´ � ă u ´ x,

´1 else if x ´ � ą u ´ x.

(10.1)

The choice of qpxq is not unique because any nonnegative smooth concave function that is zero

at xj P t�j , uju works in our framework. For example, we could use a smooth approximation

of mintxj ´ �j , uj ´ xj , 1u (this potentially can avoid numerical issues that can arise if x is

far from its bounds).

q(x)

min{x − �, u − x}

ω

� u

Figure 10.1: Plot of qpxq, a smooth approximation of mintx ´ �, u ´ xu.
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10.1 Properties of the penalty function

We show how the penalty function φσpxq naturally expresses the optimality conditions

of (NP). We also give explicit expressions for the threshold value of the penalty parameter σ.

The gradient and Hessian of the penalty are given in (9.2).

10.1.1 Optimality conditions

The penalty function φσ is closely related to the (partial) Lagrangian Lpx, yq associated

with (NP) that dualizes only the equality constraints. To make this connection clear, we

define the Karush-Kuhn-Tucker (KKT) optimality conditions for (NP) in terms of the

optimality conditions of (PP). From the definition of φσ and yσ and the derivatives (9.2),

the following definitions are equivalent to the KKT conditions.

Definition 10.1 (First-order KKT point) A point px‹, z‹q is a first-order KKT point

of (NP) if for any σ ě 0 the following hold:

� ď x‹ ď u (10.2a)

cpx‹q “ 0, (10.2b)

∇φσpx‹q “ z‹, (10.2c)

z‹
j “ 0, if j R Apx‹q, (10.2d)

z‹
j ě 0, if x‹

j “ �j , (10.2e)

z‹
j ď 0, if x‹

j “ uj . (10.2f)

Then y‹ :“ yσpx‹q is the Lagrange multiplier of (NP) associated with x‹. Note that by (A3),

inequalities (10.2e) and (10.2f) are strict.

Definition 10.2 (Second-order KKT point) The first-order KKT point px‹, z‹q satisfies

the second-order necessary KKT condition for (NP) if for any σ ě 0,

pT∇2φσpx‹qp ě 0 for all p P Cpx‹, z‹q. (10.3)

The condition is sufficient if the inequality is strict.

Remark 10.3 If (10.2b) is omitted, Definition 10.1 corresponds to first-order KKT

points of (PP). Similarly, replacing Cpx‹, z‹q by Cφpx‹, z‹q in Definition 10.2 corresponds

to second-order KKT points of (PP).

The second-order KKT condition says that at a second-order KKT point of (PP), φσ

has nonnegative curvature only along directions in the critical cone Cφpx‹, z‹q. However, at

x‹, we show that increasing σ will increase curvature only along the normal cone of equality

constraints. We derive a threshold value for σ so that φσ has nonnegative curvature even

when Apx‹qTp ‰ 0, as well as a condition on σ that ensures stationary points of (PP) are

primal feasible. For a given first- or second-order KKT triple px‹, y‹, z‹q of (NP), we define

σ‹ :“ 1
2λm̀ax

´
PQpx‹q1{2HLpx‹, y‹qQpx‹q1{2P

¯
, (10.4)

where P :“ PQ1{2px‹qApx‹q.
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Lemma 10.4 If cpxq P range
`
ApxqTQpxq˘

, then yσpxq satisfies

ApxqTQpxqApxqyσpxq “ ApxqTQpxqgpxq ´ σcpxq. (10.5)

Furthermore, if QpxqApxq has full rank, then

ApxqTQpxqApxqYσpxqT
“ ApxqT rQpxqHσpxq ´ σI ` Rpx, gσpxqqs ` Spx,Qpxqgσpxqq. (10.6)

Proof. For any x, the necessary and sufficient optimality conditions for (8.2) give (10.5).

For brevity, let everything be evaluated at the same point x, and drop the argument x from

all operators. By differentiating both sides of (10.5), we obtain

SpQAyσq ` AT
“
RpAyσq ` QT pyσq ` QAY T

σ

‰ “ SpQgq ` AT rRpgq ` QH ´ σIs .

By rearranging the above, and using definitions (8.8), we obtain (10.6).

Theorem 10.5 Suppose px̄, z̄q is a first-order KKT point for (PP) with Qpx̄q1{2Apx̄q
full-rank, and let px‹, y‹, z‹q be a second-order necessary KKT point for (NP). Then

σ ą }Apx̄qTQpx̄qYσpx̄q} ùñ x̄ satisfies Definition 10.1; (10.7a)

pT∇2φσpx‹qp ě 0 ðñ σ ě σ‹, @p P Cφpx‹, z‹q. (10.7b)

If x‹ is second-order sufficient, then the inequalities in (10.7b) hold strictly.

Proof. Proof of (10.7a): Because x̄ is a first-order KKT point for (PP), we need only show

that cpx̄q “ 0. By the complementarity conditions we have (10.2d)–(10.2f), Qpx̄q∇φσpx̄q “ 0,

so that

Qpx̄qgpx̄q “ Qpx̄qApx̄qyσpx̄q ` Qpx̄qYσpx̄qcpx̄q.
Substituting (10.5) evaluated at x̄ into this equation yields, after simplifying,

Apx̄qTQpx̄qYσpx̄qcpx̄q “ σcpx̄q.

Taking norms of both sides and using the triangle inequality gives the inequality σ}cpx̄q} ď
}Apx̄qTQpx̄qYσpx̄q} }cpx̄q}, which implies that cpx̄q “ 0.

Proof of (10.7b): Because x‹ satisfies first-order conditions (10.2), we have y‹ “ yσpxq
and Qpx‹qgσpx‹q “ 0, independently of σ. We drop the arguments from operators that

take x as input, and assume that they are all evaluated at x‹. It follows from (10.6),

HLpx‹, y‹q “ Hσ, and the definition of the projector P :“ PQ1{2px‹qApx‹q that

Q1{2AY T
σ Q1{2 “ P pQ1{2HLpx‹, y‹qQ1{2 ´ σI ` RpgσqQ1{2q. (10.8)

Observe that if p P Cφpx‹, z‹q, then p “ Q1{2p̄ for some p̄ P Cφpx‹, z‹q. Because Q1{2gσ “ 0,

we have Rpgσqp “ 0. Therefore using (9.2b), (10.8), and the relation P ` P̄ “ I, we have

pT∇2φσpx‹qp ě 0 ðñ p̄TQ1{2 `
Hσ ´ AY T

σ ´ YσA
T

˘
Q1{2p̄ ě 0

ðñ p̄T
´
P̄Q1{2HσQ

1{2P̄ ´ PQ1{2HσQ
1{2P ` 2σP

¯
p̄ ě 0.
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Now, because P̄ p̄ P kerpATQ1{2q implies that Q1{2P̄ p̄ P Cpx‹, z‹q, the first term above is

nonnegative according to Definition 10.2. It follows that σ must be sufficiently large that

2σP ´ PQ1{2HLpx‹, y‹qQ1{2P ľ 0, which is equivalent to σ ě σ‹.

As in Theorem 9.4, (10.7b) shows that if x‹ is a second-order KKT point of (NP), there

exists a threshold value σ‹ such that x‹ will also be a second-order KKT point of (PP).

However, this does not preclude the possibility that there exist minimizers of the penalty

function—for any value of σ—that are not minimizers of (NP). However, these are rarely

encountered in practice. Further, we can add a quadratic penalty term which under certain

conditions will ensure that KKT points of (PP) are feasible for (NP) as in Section 9.1.3

10.2 Evaluating the penalty function

As in Section 9.2, we show how to evaluate φσ ad its derivatives by solving structured

linear systems. In this case, we show that this linear system may be either symmetric or

unsymmetric, and discuss the tradeoffs between both approaches. In either case, if direct

methods are to be used, only a single factorization that defines the solution (8.2) is required

for all products.

We drop the arguments on various functions and assume they are all evaluated at a point

x for some parameter σ. We express (10.6) using the shorthand notation

ATQAY T
σ “ AT pQHσ ´ σI ` Rσq ` Sσ. (10.9)

We first describe how to compute products Yσu and Y T
σ v, then how to put those pieces

together to evaluate the penalty function and its derivatives.

Every quantity of interest can be computed by solving a symmetric or unsymmetric linear

system and combining the solution with the derivatives of the problem data. Typically it

is preferable to solve symmetric rather than unsymmetric linear systems; however, we find

that additional Jacobian products are needed when the symmetric linear system is used.

The additional cost may be negligible, but this matter becomes application dependent. We

therefore present both options, beginning with the symmetric case.

There are many ways to construct the right-hand sides of the linear systems presented

below. One consideration is that inversions with the diagonal matrix Q1{2 should be avoided—

even though the diagonal of Q will be assumed strictly positive because of the use of an

interior method (see Chapter 11), numerical difficulties may arise near the boundary of the

feasible set if Q1{2 contains small entries and is inverted.

10.2.1 Computing the product Yσu

It follows from (10.9) that for a given m-vector u,

Yσu “ pHσQ ´ σI ` RσqApATQAq´1u ` ST
σpATQAq´1u.

Let w “ ´pATQAq´1u and v “ ´Q1{2Aw, so that v and w are the solution of the

symmetric linear system «
I Q1{2A

ATQ1{2

ff «
v

w

ff
“

«
0

u

ff
. (10.10)
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Then Yσu “ HσQ
1{2v ` pσI ´ RσqAw ´ ST

σw. Algorithm 9 formalizes this process.

Algorithm 9 Computing the matrix-vector product Yσu

1: pv, wq Ð solution of (10.10)
2: return HσQ

1{2v ` pσI ´ RσqAw ´ ST
σw

10.2.2 Computing the product YT
σv

Again from (10.9), multiplying both sides on the right by v gives

Y T
σ v “ pATQAq´1AT pQHσ ´ σI ` Rσqv ` pATQAq´1Sσv.

The product u “ Y T
σ v is the solution of the system

«
I Q1{2A

ATQ1{2

ff «
r

u

ff
“

«
Q1{2Hσv

ATpσI ´ Rσqv ´ Sσv

ff
. (10.11)

Algorithm 10 formalizes the process.

Algorithm 10 Computing the matrix-vector product Y T
σ v

1: Evaluate Q1{2Hσv and ATpσI ´ Rσqv ´ Sσv
2: pr, uq Ð solution of (10.11)
3: return u

10.2.3 Unsymmetric linear system

We briefly comment on how to use unsymmetric systems in place of (10.10) and (10.11). We

can compute products of the form Yσu “ pHσ ´σI `Rσqv̄ ´ST
σw (where w “ ´pATQAq´1u

and v̄ “ ´Aw), and products u “ Y T
σ v by solving the respective linear systems:

«
I A

ATQ

ff «
v̄

w

ff
“

«
0

u

ff
and

«
I QA

AT

ff «
r̄

u

ff
“

«
pQHσ ´ σI ` Rσqv

´Sσv

ff
. (10.12)

Algorithms 9 and 10 can then be appropriately modified to use the above linear systems.

10.2.4 Computing multipliers and first derivatives

The multiplier estimates yσ and Lagrangian gradient can be obtained from one of the

following linear systems:

«
I Q1{2A

ATQ1{2

ff «
d

yσ

ff
“

«
Q1{2g
σc

ff
or

«
I A

ATQ

ff «
gσ
yσ

ff
“

«
g

σc

ff
. (10.13)

Observe that in the unsymmetric case we obtain gσ immediately, and otherwise d “ Q1{2gσ.
As noted earlier, computing gσ Ð Q´1{2d may be inaccurate compared to gσ Ð g ´ Ayσ,

which requires an additional Jacobian product.
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The penalty gradient ∇φσ “ gσ ´ Yσc can then be computed using gσ (as described

above) and computing Yσc via Algorithm 9 or its unsymmetric variant.

10.2.5 Computing second derivatives

We approximate ∇2φσ from (9.2b) using the same approaches as in (9.17):

∇2φσ « B1 :“ Hσ ´ AY T
σ ´ YσA

T (10.14a)

“ Hσ ´ rP pQHσ ` Rσ ´ σIq ´ pHσQ ` Rσ ´ σIq rP
´ ApATQAq´1Sσ ´ ST

σ pATQAq´1A

« B2 :“ Hσ ´ rP pQHσ ` Rσ ´ σIq ´ pHσQ ` Rσ ´ σIq rP , (10.14b)

where rP “ ApATQAq´1A. The first approximation drops the third derivative term ∇rYσcs
in (9.2b), while the second approximation drops the term Sσpx,Qgσq because these terms

are zero at the solution. Therefore, B1 and B2 can be interpreted as Gauss-Newton

approximations of ∇2φσ. Using similar arguments to those made by Fletcher (1973a,

Theorem 2), we expect these approximations to result in quadratic convergence when

f, c P C3, and superlinear convergence when f, c P C2.
Computing products with B1 only requires products with Yσ and Y T

σ , which can be

handled by Algorithms 9 and 10. To compute a product rPu, we can solve

«
I Q1{2A

ATQ1{2

ff «
p

q

ff
“

«
0

ATu

ff
or

«
I A

ATQ

ff «
p̄

q

ff
“

«
u

0

ff
, rPu “ ´Aq. (10.15)

As before, using the unsymmetric system avoids an additional Jacobian product, which may

be negligible compared to solving an unsymmetric system.

10.2.6 Solving the augmented linear system

We comment on various approaches for solving the necessary linear systems

K
«
p

q

ff
“

«
w

z

ff
, where K “

«
I Q1{2A

ATQ1{2

ff
or

«
I A

ATQ

ff
. (10.16)

This is the most computationally intensive step in the penalty approach. Note that when

direct methods are used, a single factorization is needed to evaluate φσ and its (approximate)

derivatives.

Appendix C describe several approaches for solving the symmetric system (using both

direct and iterative methods). For unsymmetric systems, any sparse factorization of K
may be used; also, we could factorize Q1{2A with a Q-less QR factorization and use the

(refined) semi-normal equations (Björck and Paige, 1994) as in the symmetric case (as long

as multiplications with Q´1{2 are avoided).

If iterative methods are used, the unsymmetric system requires unsymmetric iterative

methods such as GMRES (Saad and Schultz, 1986), SPMR (Estrin and Greif, 2018), or

QMR (Freund and Nachtigal, 1991), where the choice of method depends on considerations

such as short- vs. long-recurrence, available preconditioners, or robustness. Note that
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preconditioners approximating P « ATQA apply to both the symmetric and unsymmetric

systems; however, unsymmetric solvers may allow inexact preconditioner solves, while

short-recurrence symmetric solvers may not.

If optimization solvers that accept inexact function and derivative evaluations are used

(e.g., Conn et al. (2000, §8–9) or Heinkenschloss and Ridzal (2014)), the results of Section 9.5

apply here as well; that is, bounding the residual norm of the linear systems is sufficient to

bound the function and derivative evaluation error up to a constant (under mild assumptions).

This is useful for applications where solving the linear system exactly every iteration is

prohibitively expensive. Further, when the symmetric system is used, it is possible to

use methods that upper bound the solution error (e.g., CRAIG Arioli (2013) or LNLQ

(Chapter 5)) when an underestimate of the smallest singular value of the preconditioned

Jacobian is available.



Chapter 11

Practical considerations and numerical

experiments

We discuss some matters related to the use of φσ in practice. In principle, nearly any smooth

unconstrained solver can be used to find a local minimum of φσ because it has at least one

continuous derivative, and a continuous Hessian approximation if (A1a) is satisfied. However,

the structure of φσ lends itself more readily to certain optimization methods than to others,

especially when the goal of creating a factorization-free solver is kept in mind.

Fletcher (1973a) originally envisioned a Newton-type procedure

xk`1 Ð xk ´ αkB
´1
i pxkq∇φσpxkq, i “ 1 or 2,

where B1, B2 are the Hessian approximations from (9.17a)–(9.17b) and αk ą 0 is a step size.

Fletcher (1973a, Theorem 2) further proved that superlinear convergence is achieved, or

quadratic convergence if the second derivatives of f and c are Lipschitz continuous. However,

for large problems it is expensive to compute Bi explicitly and solve the dense system

Bisk “ ´∇φσpxkq.
We instead propose using a Steihaug (1983) Newton-CG type trust-region solver to

minimize φσ. First, trust-region methods are preferable to linesearch methods (Nocedal and

Wright, 2006, §3–4) for objectives with expensive evaluations; it is costly to evaluate φσ

repeatedly to determine a step-size every iteration as this requires solving a linear system.

Further, ∇2φσ is often indefinite and trust-region methods can take advantage of directions

of negative curvature. Computing Bi explicitly is not practical, but products are reasonable

as they only require solving two linear systems with the same matrix, thus motivating the

use of a Newton-CG type trust-region solver. In particular, solvers such as TRON (Lin and

Moré, 1999b) and KNITRO (Byrd, Nocedal, and Waltz, 2006) are suitable for minimizing φσ.

KNITRO has the additional advantage of handling explicit linear constraints.

Further, we recommend interior solvers rather than exterior or active-set methods. For

φσpxq to be defined, we require that Qpxq ľ 0 (thus disqualifying exterior point methods)

and that Qpxq1{2Apxq has full column-rank (so that at most n ´ m components of x can

equal a bound). Even if (A2b) is satisfied, an active-set method may choose a poor active set

that causes φσpxq to be undefined (or it may have too many active bounds). On the other

hand, interior methods ensure that Qpxq ą 0 and avoid this issue (at least until x converges

and approaches the bounds).

We have not yet addressed choosing σ. Although we can provide an a posteriori threshold

value for σ‹, it is difficult to know this threshold ahead of time. Mukai and Polak (1975)

give a scheme for updating ρ with φσ,ρ and σ “ 0; however, they were using a Newton-like

scheme that required a solve with B1pxq. Further, σ‹ ensures only local convexity, and that

a local minimizer of (NP) is a local minimizer of φσ—but as with other penalty functions,

98
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φσ may be unbounded below in general for any σ. A heuristic that we employ is to ensure

that the primal and dual feasibility, }cpxq} and }gLpx, yσpxqq}, are within some factor of each

other (e.g., 100) to encourage them to decrease at approximately the same rate. If primal

feasibility decreases too quickly and small steps are taken, it is indicative of σ being too

large, and similarly if primal feasibility is too large then σ should be increased; this can

be done with a multiplicative factor or by estimating }PApxqHσpxqPApxq} via the power

method. Although this heuristic is often effective in our experience, in situations where

the penalty function begins moving toward negative infinity, we require a different recovery

strategy, which is the subject of future work.

In practice, regularization (Section 9.4) is used only if necessary. For well-behaved

problems, using δ “ 0 typically requires fewer outer iterations than using δ ą 0. However,

when convergence is slow and/or the Jacobians are ill-conditioned, initializing with δ ą 0 is

often vital and can improve performance significantly.

11.1 Numerical experiments

We investigate the performance of Fletcher’s penalty on several PDE-constrained optimization

problems and some standard test problems. For each test we use the stopping criterion

}cpxkq} ď �p
}Npxqgσpxkq} ď �d

or }Npxq∇φσpxkq} ď �d, (11.1)

with Npxq :“ diagpmintx ´ �, u ´ x,�uq, �p :“ � p1 ` }xk}8 ` }cpx0q}8q, and �d :“
� p1 ` }yk}8 ` }gσpx0q}8q, where � ą 0 is a tolerance, e.g., � “ 10´8. We also keep σ

fixed for each experiment.

Depending on the problem, the augmented systems (10.16) are solved by either direct or

iterative methods. For direct methods, we use the corrected semi-normal equations (Björck

and Paige, 1994); see Appendix C. For iterative solves, we use CRAIG (Craig, 1955; Arioli,

2013) (computed via LNLQ) with preconditioner P and two possible termination criteria:

›››››

«
p‹

q‹

ff
´

«
ppkq

qpkq

ff››››› sP
ď η

›››››

«
ppkq

qpkq

ff››››› sP
, P̄ :“

«
I

P

ff
(11.2a)

›››››K
«
ppkq

qpkq

ff
´

«
u

v

ff››››› sP´1

ď η

›››››

«
u

v

ff››››› sP´1

, (11.2b)

which are respectively based on the relative error (obtained via LNLQ; see Chapter 5) and

the relative residual. We can use (11.2a) when a lower bound on σminpAP´1{2q is available

(e.g., for the PDE-constrained optimization problems).

We use KNITRO (Byrd et al., 2006) and a Matlab implementation of TRON (Lin and

Moré, 1999b). Our implementation of TRON1 does not require explicit Hessians (only

Hessian-vector products) and is unpreconditioned. We use B1pxq (10.14a) when efficient

products with Spu, xq are available, otherwise we use B2pxq (10.14b). When φσ is evaluated

approximately (for coarse η), we use the solvers without modification, thus pretending that

the function and gradient are evaluated exactly.

1https://github.com/optimizers/bcflash
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Table 11.1: Results of solving (11.3) using TRON to minimize φσ, with various η in (11.2a)
(left) and (11.2b) (right) to terminate the linear system solves. We record the number of
function/gradient evaluations (#f, g), Lagrangian Hessian (#Hv), Jacobian (#Av), and
adjoint Jacobian (#ATv) products.

η Iter. #f, g #Hv #Av #ATv Iter. #f, g #Hv #Av #ATv

10´2 37 37 19112 56797 50553 35 35 7275 29453 27148
10´4 34 34 6758 35559 33423 35 35 7185 36757 34482
10´6 35 35 7182 45893 43619 35 35 7194 47999 45721
10´8 35 35 7176 53296 51204 35 35 7176 54025 51753
10´10 35 35 7176 59802 57530 35 35 7176 59310 57038

error-based termination residual-based termination

11.2 1D Burger’s equation

We solve the following one-dimensional ODE-constrained control problem:

minimize
u,z

1
2

ż

Ω

pupsq ´ udpsqq2 ds ` 1
2α

ż

Ω

zpsq2dx
subject to ´νuss ` uus “ z ` h in Ω,

up0q “ 0, up1q “ ´1,

(11.3)

where the constraint is a 1D Burger’s equation over Ω “ p0, 1q, with hpsq “ 2
`
ν ` s3

˘
and

ν “ 0.08. The first objective term measures deviation from the data udpsq, while the second

term regularizes the control with α “ 10´2. We discretize (11.3) by segmenting Ω into

nc “ 512 equal-sized cells, and approximate u and z with piecewise linear elements. This

results in a nonlinearly constrained optimization problem with n “ 2nc “ 1024 variables and

m “ nc ´ 1 constraints.

We optimize x “ pu, zq by minimizing φσ with σ “ 103, using B1pxq (9.17a) as Hessian

approximation and u0 “ �, z0 “ � as the initial point. We use TRON to optimize φσ

and LNLQ to (approximately) solve (10.16). We partition the Jacobian of the discretized

constraints into ApxqT “
”
AupxqT AzpxqT

ı
, where Aupxq P Rnˆn and Azpxq P Rmˆn are

the Jacobians for u and z. We use the preconditioner Ppxq “ AupxqTAupxq, which amounts

to performing two solves of Burger’s equation with a given source. For this preconditioner,

σminpAP´1{2q ě 1, allowing us to bound the error via LNLQ and to use both (11.2a)

and (11.2b) to terminate LNLQ. The maximum number of inner-CG iterations (for solving

the trust-region subproblem) is n.

We choose � “ 10´8 in the stopping conditions (11.1). Table 11.1 records the number of

Hessian- and Jacobian-vector products as we vary the accuracy of the linear system solves

via η in (11.2). TRON required a moderate number of trust-region iterations. However,

evaluating φσ and its derivatives can require many Jacobian and Hessian products, because

for every product with the approximate Hessian we need to solve an augmented linear

system. On the other hand, the linear systems did not have to be solved to full precision.

As η increased from 10´10 to 10´2, the number of Hessian-vector products stayed relatively

constant, but the number of Jacobian-vector products dropped substantially, and the average
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Table 11.2: Results of solving (11.4) using TRON to minimize φσ with various η in (11.2a)
(left) and (11.2b) (right) to terminate the linear system solves. We record the number of
function/gradient evaluations (#f, g), Lagrangian Hessian (#Hv), Jacobian (#Av), and
adjoint Jacobian (#ATv) products.

η Iter. #f, g #Hv #Av #ATv Iter. #f, g #Hv #Av #ATv

10´2 29 29 874 1794 2608 27 27 850 1772 2562
10´4 27 27 830 1950 2728 25 25 668 1649 2265
10´6 27 27 866 2317 3129 27 27 868 2356 3168
10´8 27 27 866 2673 3485 27 27 866 2784 3596
10´10 27 27 866 3145 3957 27 27 866 3251 4063

error-based termination residual-based termination

number of LNLQ iterations required per solve dropped from about 9 to 5, except when

η “ 10´2 in (11.2a) and the linear solves were too inaccurate so that the number of CG

iterations per trust-region subproblem increased dramatically near the solution (requiring

more linear solves). Using (11.2b) tended to perform more products with the Lagrangian

Hessian and Jacobian, except when the linear solves were nearly exact, or extremely inexact.

11.3 2D Inverse Poisson problem

Let Ω “ p0, 1q2 denote the physical domain and H1pΩq denote the Sobolev space of functions

in L2pΩq, whose weak derivatives are also in L2pΩq. Let H1
0 pΩq Ă H1pΩq be the Hilbert

space of functions whose value on the boundary BΩ is zero. We solve the following 2D

PDE-constrained control problem:

minimize
uPH1

0 pΩq, zPL2pΩq
1
2

ż

Ω

pu ´ udq2 ds ` 1
2α

ż

Ω

z2ds

subject to ´∇ ¨ pz∇uq “ h in Ω,

u “ 0 in BΩ.
(11.4)

Let c “ p0.2, 0.2q and define S1 “ ts | }s ´ c}2 ď 0.3u and S2 “ ts | }s ´ c}1 ď 0.6u. The

target state ud is generated as the solution of the PDE with z‹psq “ 1`0.5¨IS1
psq`0.5¨IS2

psq,
where for any set C, ICpsq “ 1 if s P C and 0 otherwise.

The force term is hps1, s2q “ ´ sinpωs1q sinpωs2q, with ω “ π ´ 1
8 . The control variable z

represents the diffusion coefficients for the Poisson problem that we are trying to recover based

on the observed state ud. We set α “ 10´4 as regularization parameter. We discretize (11.4)

using P1 finite elements on a uniform mesh of 1089 triangular elements and employ an

identical discretization for the optimization variables z P L2pΩq, obtaining a problem with

nu “ 961 states and nz “ 1089 controls, so that n “ nu ` nz. There are m “ nu constraints,

as we must solve the PDE on every interior grid point. The initial point is u0 “ �, z0 “ �.

We use σ “ 10´2 as penalty parameter and B2pxq as Hessian approximation. We again

use LNLQ for the linear solves, with the same preconditioning strategy as in Section 11.2.

The results are given in Table 11.2. We see a trend similar to that of Table 11.1, as larger η

allows TRON to converge within nearly the same number of outer iterations and Lagrangian
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Table 11.3: Results of solving (11.4) with z ě 0 using KNITRO on (PP) with various η in
(11.2a) (left) and (11.2b) (right) to terminate the linear system solves. The top (resp. bottom)
table records results for the smaller problem with n “ 2050, m “ 1089 (resp. larger problem
with n “ 20002, m “ 10201). We record the number of function/gradient evaluations (#f, g),
Lagrangian Hessian (#Hv), Jacobian (#Av), and adjoint Jacobian (#ATv) products.

η Iter. #f, g #Hv #Av #ATv Iter. #f, g #Hv #Av #ATv

10´2 46 64 2856 8436 8611 67 81 4374 12915 13145
10´4 43 55 2168 6642 6796 36 51 1458 4642 4781
10´6 35 46 2120 6876 7004 29 35 1194 4138 4238
10´8 39 50 2322 7833 7973 47 71 7062 22150 22340
10´10 37 47 2236 8110 8242 43 58 3170 11565 11725

10´2 144 176 3662 12395 12892 100 126 3716 11702 12055
10´4 131 177 4002 14470 14956 83 117 2752 9264 9582
10´6 103 135 4386 15035 15409 88 132 4170 14421 14774
10´8 73 103 3250 11960 12244 101 133 3726 13878 14246
10´10 79 109 4088 15527 15825 104 139 5378 20291 20674

error-based termination residual-based termination

Hessian-vector products (even when η “ 10´2), while significantly decreasing the number

of Jacobian-vector products. We see again that using (11.2a) to terminate LNLQ tends to

need less work than with (11.2b). The exception is using (11.2b) with η “ 10´4. The solver

terminates two iterations sooner, resulting in a sharp drop in Jacobian-vector products but

equally good solution quality. Note that if � “ 10´9 were used for the experiment, the runs

would appear more similar to one another.

We now solve (11.4) with the additional bound constraint z ě 0 (keeping the diffusivity

coefficient nonnegative). We solve the problem with the same discretization as before, as

well as a second refined discretization with nz “ 10201, nu “ 9801.

We optimize x “ pu, zq by applying KNITRO to (PP) with the same initial conditions

and penalty parameter. We again use the preconditioner Ppxq “ AupxqTAupxq, which

ensures that σminpApxqP´1{2q ě 1 because the bound constraints only apply to z ě 0. Then

Qpxq “ blkdiagpI, Zq with Z “ diagpzq, and

P´1ApxqTQpxqApxq “ P´1pAupxqTAupxq ` AzpxqZAzpxqq
“ I ` P´1AzpxqZAzpxq.

Therefore we can use LNLQ with either (11.2b) or (11.2a) as termination criterion.

The results are recorded in Table 11.3. We observed that for the smaller problem,

KNITRO converged in a moderate number of outer iterations in all cases. With (11.2a), we

see that the number of Jacobian products tended to decrease, except when η “ 10´2, because

the linear solves were too coarse. Using (11.2b) showed a less clear trend. In cases with

comparable outer iteration numbers, larger η resulted in fewer Jacobian products. However,

for moderate η the number of outer iterations proved to be significantly smaller, resulting in

a more efficient solve than when η was too small or too large.



11.3. 2D INVERSE POISSON PROBLEM 103

Table 11.4: Comparison of Fletcher (top) and composite step (bottom) on (11.4). Each
table provides the corresponding iteration log. We record the objective value (fpxkq),
constraint violation (}cpxkq}), Lagrangian gradient norm (}∇Lpxk, ykq}), penalty function
φσpxkq, penalty gradient (}φσpxkq}), CG iterations (CG), function and gradient evaluations
(#f, g), number of linear solves (Sys), and total GMRES iterations (Sys iter.).

Iter. fpxkq }cpxkq} }∇Lpxk, ykq} φσpxkq }∇φσpxkq} CG #f, g

0 6.6 ¨ 10´02 1.1 ¨ 10´15 6.4 ¨ 10´06 6.6 ¨ 10´02 6.4 ¨ 10´06 1
1 6.6 ¨ 10´02 5.5 ¨ 10´07 3.0 ¨ 10´08 6.6 ¨ 10´02 3.5 ¨ 10´08 7 2
2 6.6 ¨ 10´02 7.6 ¨ 10´09 3.2 ¨ 10´10 6.6 ¨ 10´02 3.4 ¨ 10´10 19 3
3 6.6 ¨ 10´02 8.1 ¨ 10´09 3.7 ¨ 10´11 6.6 ¨ 10´02 7.3 ¨ 10´11 38 4

Solve Time: 0.52s

Iter. fpxkq }cpxkq} }∇Lpxk, ykq} Sys Sys iter. CG #f, g

0 6.6 ¨ 10´02 1.1 ¨ 10´15 6.4 ¨ 10´06

1 6.6 ¨ 10´02 1.7 ¨ 10´10 2.8 ¨ 10´08 9 47 3 3
2 6.6 ¨ 10´02 3.3 ¨ 10´11 2.3 ¨ 10´10 21 112 7 5
3 6.6 ¨ 10´02 6.1 ¨ 10´16 1.2 ¨ 10´12 38 211 12 7

Solve Time: 0.21s

For the larger problem with termination condition (11.2a), the number of outer iterations

increased with η, the number of Lagrangian Hessian products fluctuated somewhat, and

Jacobian products tended to decrease. The exception is η “ 10´8, which hits the sweet spot

of solving the linear systems sufficiently accurately to avoid many additional outer iterations,

but without performing too many iterations for each linear solve. Using residual-based

termination (11.2b) shows a less clear trend; Jacobian products roughly decreased with

increasing η while the Hessian products tended to oscillate. The sweet spot is hit with

η “ 10´4, where the fewest outer iterations and operator products were performed. For this

problem, it appears that the dependence of performance on the accuracy of the linear solves

as measured by the residual (11.2b) is much more nonlinear than when the linear solves are

terminated according to the error (11.2a).

11.3.1 Comparison with ROL

We compare our penalty method to the composite step trust-region method (Heinkenschloss

and Ridzal, 2014) on (11.4). Both methods are implemented in C++ as part of the Rapid

Optimization Library (ROL) in Trilinos (Heroux et al., 2003). Solving (11.4) on the unit

cube discretized as an 8ˆ8ˆ8 grid results in a problem with n “ 1458 variables and m “ 729

constraints. We run the composite step method (Table 11.4 bottom) and Fletcher (Table 11.4

top), and record their iteration logs. To solve the augmented systems, we use preconditioned

GMRES (with the same preconditioner as before), terminated when the residual norm is

below 10´12. For Fletcher, we use σ “ 10´2 as the penalty parameter.

We see that the performance of Fletcher and the composite step method are comparable

in terms of outer iterations and time. Fletcher solves about twice as many augmented

systems (every CG iteration is two linear solves), and so it takes roughly twice the solve time

of the composite step method.
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Table 11.5: Results of solving (11.5) using TRON to minimize φσ with various η in (11.2a)
(left) and (11.2b) (right) to terminate the linear system solves. We record the number of
Lagrangian Hessian (#Hv), Jacobian (#Av), and adjoint Jacobian (#ATv) products.

η Iter. #f, g #Hv #Av #ATv Iter. #f, g #Hv #Av #ATv

10´2 29 29 822 1582 2342 29 29 822 1636 2396
10´4 29 29 816 1635 2389 29 29 816 1801 2555
10´6 29 29 816 1800 2554 29 29 816 2029 2783
10´8 29 29 816 2077 2831 29 29 816 2301 3055
10´10 29 29 816 2351 3105 29 29 816 2637 3391

error-based termination residual-based termination

11.4 2D Poisson-Boltzmann problem

We now solve a control problem where the constraint is a 2D Poisson-Boltzmann equation:

minimize
uPH1

0 pΩq, zPL2pΩq
1
2

ż

Ω

pu ´ udq2 ds ` 1
2α

ż

Ω

z2ds

subject to ´Δu ` sinhpuq “ h ` z in Ω,

u “ 0 in BΩ.
(11.5)

We use the same notation and Ω as in Section 11.3, with the forcing term hps1, s2q “
´ sinpωs1q sinpωs2q, ω “ π ´ 1

8 , and target state

udpsq “
#
10 if s P r0.25, 0.75s2
5 otherwise.

We discretize (11.5) using P1 finite elements on a uniform mesh with 1089 triangular elements,

resulting in a problem with n “ 2050 variables and m “ 961 constraints. The initial point is

u0 “ �, z0 “ �.

We perform the experiment described in Section 11.3 using σ “ 10´1, and record the

results in Table 11.5. The results are similar to Table 11.2, where the number of Jacobian

products decreases with η, while the number of outer iterations and Lagrangian-Hessian

products stays fairly constant. We see that with stopping criterion (11.2b), the LNLQ

iterations increase somewhat compared to (11.2a), as it is a tighter criterion.

We now repeat the experiment with the additional bound constraint z ě 0, and solve

the problem with the same discretization as before, as well as on a refined mesh where

nz “ 10201 and nu “ 9801. The initial point and penalty parameter are unchanged, but we

now use KNITRO as the optimization solver. The results are recorded in Table 11.6.

We see that the results for both problems are more robust to changes in the accuracy

of the linear solves. In all cases, the number of outer iterations and function/gradient

evaluations were the same, and the number of Lagrangian Hessian products changed little.

The number of Jacobian products steadily decreased with increasing η, with a 20–30% drop

in Jacobian products from η “ 10´10 to η “ 10´2.
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Table 11.6: Results of solving (11.5) with z ě 0 using KNITRO on (PP) with various η in
(11.2a) (left) and (11.2b) (right) to terminate the linear system solves. The top (resp. bottom)
table records results for the smaller problem with n “ 2050, m “ 1089 (resp. larger problem
with n “ 20002, m “ 10201). We record the number of function/gradient evaluations (#f, g),
Lagrangian Hessian (#Hv), Jacobian (#Av), and adjoint Jacobian (#ATv) products.

η Its. #f, g #Hv #Av #ATv Its. #f, g #Hv #Av #ATv

10´2 19 20 1242 3648 3708 19 20 1242 3669 3729
10´4 19 20 1252 3753 3813 19 20 1244 3762 3822
10´6 19 20 1236 3868 3928 19 20 1234 3916 3976
10´8 19 20 1244 4169 4229 19 20 1236 4286 4346
10´10 19 20 1238 4725 4785 19 20 1250 4986 5046

10´2 30 37 1524 4426 4531 30 37 1524 4468 4573
10´4 30 37 1524 4574 4679 30 37 1524 4632 4737
10´6 30 37 1524 4813 4918 30 37 1558 5033 5138
10´8 30 37 1550 5396 5501 30 37 1550 5610 5715
10´10 30 37 1550 6224 6329 30 37 1558 6582 6687

error-based termination residual-based termination

11.4.1 Comparison with ROL

We perform a comparison similar to Section 11.3.1 for (11.5), by comparing our method

with the composite step trust-region method of Heinkenschloss and Ridzal (2014) and the

augmented Lagrangian method (Hestenes, 1969; Powell, 1969; Conn et al., 1992). All method

are implemented in C++ as part of ROL in Trilinos.

We first solve (11.5) without constraints on z. We discretize Ω on a 50ˆ50 grid, producing

a problem with n “ 5202 variables and m “ 2601 constraints. We then apply Fletcher’s

penalty function (with σ “ 10´1) and the composite step method to this problem, and record

the results in Table 11.7. All augmented systems are solved using GMRES with the same

preconditioner as before. The composite step method is significantly more efficient in this

case, as our approach requires many CG iterations to converge near the solution.

We now solve the problem with bound constraints on the control variables: 0 ď z ď 10.

We discretize Ω into a 60 ˆ 20 grid so that we have n “ 2562 variables and m “ 1281

constraints. We solve the problem using our approach and the augmented Lagrangian

method, and record the results in Table 11.8. In this case, our penalty approach shows

itself to be more efficient than using the augmented Lagrangian method. It should be

noted that the Lagrangian Hessian and augmented Lagrangian Hessian are highly singular,

resulting in slow convergence for both methods. In particular, this results in the high

number of CG iterations for our approach and for the augmented Lagrangian method. A

reduced-space method that always maintains feasibility with respect to the PDE constraint

can be particularly advantageous here because the issue with the singular Hessian does not

apply. However, it may not be as effective in large-scale cases because it becomes impractical

to always solve accurately the differential equation, whereas full-space methods such as our

approach can take advantage of inexact solves.
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Table 11.7: Comparison of Fletcher (top) and composite step (bottom) on (11.5). Each
table provides the corresponding iteration log. We record the objective value (fpxkq),
constraint violation (}cpxkq}), Lagrangian gradient norm (}∇Lpxk, ykq}), penalty function
φσpxkq, penalty gradient (}φσpxkq}), CG iterations (CG), function and gradient evaluations
(#f, g), number of linear solves (Sys), and total GMRES iterations (Sys iter.).

Iter. fpxkq }cpxkq} }∇Lpxk, ykq} φσpxkq }∇φσpxkq} CG #f, g

0 3.1 ¨ 10´01 1.3 ¨ 10´13 9.3 ¨ 10´03 3.1 ¨ 10´01 9.3 ¨ 10´03

1 2.2 ¨ 10´01 1.8 ¨ 10´04 3.6 ¨ 10´02 2.3 ¨ 10´01 7.0 ¨ 10´02 1 2
2 1.5 ¨ 10´01 4.4 ¨ 10´02 3.9 ¨ 10´02 1.7 ¨ 10´01 7.7 ¨ 10´02 2 3
3 8.7 ¨ 10´02 2.7 ¨ 10´01 5.5 ¨ 10´02 1.1 ¨ 10´01 1.1 ¨ 10´01 4 4
4 5.8 ¨ 10´02 1.2 ¨ 10´01 1.3 ¨ 10´02 6.0 ¨ 10´02 2.6 ¨ 10´02 5 5
5 2.1 ¨ 10´02 4.7 ¨ 10´01 3.4 ¨ 10´02 3.3 ¨ 10´02 6.8 ¨ 10´02 4 6
6 8.0 ¨ 10´03 2.2 ¨ 10´04 1.6 ¨ 10´02 1.0 ¨ 10´02 3.2 ¨ 10´02 6 7
7 6.3 ¨ 10´03 7.2 ¨ 10´04 2.2 ¨ 10´03 6.4 ¨ 10´03 4.4 ¨ 10´03 5 8
8 2.7 ¨ 10´03 1.0 ¨ 10´04 6.5 ¨ 10´03 3.1 ¨ 10´03 1.3 ¨ 10´02 8 9
9 2.7 ¨ 10´03 1.6 ¨ 10´05 2.6 ¨ 10´05 2.7 ¨ 10´03 2.6 ¨ 10´05 1 10
10 2.3 ¨ 10´03 2.4 ¨ 10´06 2.6 ¨ 10´04 2.3 ¨ 10´03 5.2 ¨ 10´04 99 11
11 2.3 ¨ 10´03 4.9 ¨ 10´07 5.8 ¨ 10´07 2.3 ¨ 10´03 5.8 ¨ 10´07 1 12
12 2.3 ¨ 10´03 1.4 ¨ 10´06 2.8 ¨ 10´06 2.3 ¨ 10´03 5.7 ¨ 10´06 500 13
13 2.3 ¨ 10´03 1.5 ¨ 10´08 7.8 ¨ 10´08 2.3 ¨ 10´03 1.5 ¨ 10´07 3 14
14 2.3 ¨ 10´03 1.5 ¨ 10´07 1.8 ¨ 10´07 2.3 ¨ 10´03 3.6 ¨ 10´07 500 15
15 2.3 ¨ 10´03 5.7 ¨ 10´10 2.8 ¨ 10´09 2.3 ¨ 10´03 2.8 ¨ 10´09 1 16

Solve time: 19.9817s

Iter. fpxkq }cpxkq} }∇Lpxk, ykq} Sys Sys iter. CG #f, g

0 3.1 ¨ 10´01 4.4 ¨ 10´13 2.2 ¨ 10´02

1 5.4 ¨ 10´02 2.4 ¨ 10´02 1.2 ¨ 10´02 7 45 2 3
2 6.4 ¨ 10´03 7.8 ¨ 10´04 4.2 ¨ 10´04 14 106 2 5
3 2.4 ¨ 10´03 1.0 ¨ 10´04 5.0 ¨ 10´06 24 199 5 7
4 2.3 ¨ 10´03 2.4 ¨ 10´07 2.1 ¨ 10´07 40 370 11 9
5 2.3 ¨ 10´03 5.6 ¨ 10´10 2.4 ¨ 10´09 63 595 20 11

Solve time: 0.28s
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Table 11.8: Comparison of Fletcher (top) and augmented Lagrangian (bottom) on (11.5) with
bound constraints. Each table provides the corresponding iteration log. We record the objec-
tive value (fpxkq), constraint violation (}cpxkq}), Lagrangian gradient norm (}∇Lpxk, ykq}),
penalty function φσpxkq, penalty gradient (}φσpxkq}), CG iterations (CG), function, gradient,
and constraint evaluations (#f, g, c), and augmented Lagrangian penalty parameter (ρ).

Iter. fpxkq }cpxkq} }∇Lpxk, ykq} φσpxkq }∇φσpxkq} CG #f, g #c

0 7.7 ¨ 10´04 6.4 ¨ 10´09 5.4 ¨ 10´02 7.7 ¨ 10´04 5.4 ¨ 10´02 1
1 7.6 ¨ 10´05 2.7 ¨ 10´06 1.4 ¨ 10´01 8.4 ¨ 10´05 2.9 ¨ 10´01 3266 2 3
2 5.5 ¨ 10´05 9.1 ¨ 10´06 1.6 ¨ 10´03 5.5 ¨ 10´05 2.9 ¨ 10´03 1882 3 5
3 5.4 ¨ 10´05 7.2 ¨ 10´06 1.5 ¨ 10´03 5.4 ¨ 10´05 3.0 ¨ 10´03 2519 4 7
4 5.4 ¨ 10´05 6.9 ¨ 10´06 6.5 ¨ 10´05 5.4 ¨ 10´05 3.0 ¨ 10´05 11 5 9
5 5.3 ¨ 10´05 2.3 ¨ 10´08 7.1 ¨ 10´03 5.3 ¨ 10´05 1.4 ¨ 10´02 4476 6 11
6 5.3 ¨ 10´05 2.7 ¨ 10´09 1.0 ¨ 10´05 5.3 ¨ 10´05 2.0 ¨ 10´05 4 7 13
7 5.3 ¨ 10´05 1.2 ¨ 10´08 4.3 ¨ 10´07 5.3 ¨ 10´05 3.5 ¨ 10´07 1614 8 15
8 5.3 ¨ 10´05 5.4 ¨ 10´09 8.6 ¨ 10´07 5.3 ¨ 10´05 1.4 ¨ 10´06 5000 9 17
9 5.3 ¨ 10´05 3.5 ¨ 10´09 4.6 ¨ 10´08 5.3 ¨ 10´05 2.1 ¨ 10´08 3831 10 19
10 5.3 ¨ 10´05 1.4 ¨ 10´09 1.5 ¨ 10´07 5.3 ¨ 10´05 2.6 ¨ 10´07 5000 11 21
11 5.3 ¨ 10´05 1.1 ¨ 10´10 7.5 ¨ 10´09 5.3 ¨ 10´05 1.9 ¨ 10´08 5000 12 23

Solve time: 664.1s

Iter. fpxkq }cpxkq} }∇Lpxk, ykq} CG ρ #f #g #c

0 7.7 ¨ 10´04 6.4 ¨ 10´09 5.7 ¨ 10´02 101

1 3.1 ¨ 10´05 1.0 ¨ 10´03 2.9 ¨ 10´04 1 101 5 5 6
2 6.8 ¨ 10´05 4.2 ¨ 10´00 9.5 ¨ 10´05 19 102 44 41 61
3 8.6 ¨ 10´03 4.3 ¨ 10´01 1.7 ¨ 10´01 4 103 55 50 76
4 8.2 ¨ 10´05 4.2 ¨ 10´02 1.7 ¨ 10´02 10 104 76 71 107
5 5.7 ¨ 10´05 4.2 ¨ 10´03 1.5 ¨ 10´03 5 105 89 82 125
6 5.4 ¨ 10´05 4.2 ¨ 10´04 1.9 ¨ 10´04 53 105 323 183 406
7 5.3 ¨ 10´05 1.5 ¨ 10´07 1.7 ¨ 10´10 168 105 1128 509 1368
8 5.3 ¨ 10´05 2.6 ¨ 10´10 1.5 ¨ 10´10 83 105 1512 671 1830

Solve time: 1314.79s
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Table 11.9: Results from solving (11.6) using KNITRO to optimize (PP) with various η in
(11.2a) (left) and (11.2b) (right) to terminate the linear system solves. We record the number
of function/gradient evaluations #f, g), Lagrangian Hessian (#Hv), Jacobian (#Av), and
adjoint Jacobian (#ATv) products. The symbol ˚ indicates that the problem failed to
converge to a feasible point after 500 iterations.

η Its. #f, g #Hv #Av #ATv Its. #f, g #Hv #Av #ATv

10´2 217 340 4340 13966 15204 * * * * *
10´4 226 348 4396 14068 15204 * * * * *
10´6 176 272 3232 11218 12211 191 291 3508 18326 19391
10´8 185 289 3356 11582 12635 196 296 3700 20888 21973
10´10 204 298 4626 15412 16511 190 286 3480 23979 25028

error-based termination residual-based termination

11.5 2D topology optimization

We now solve the following 2D topology optimization problem from Gersborg-Hansen,

Bendsøe, and Sigmund (2006):

minimize
uPH1

0 pΩq, zPL2pΩq

ż

Ω

fu ds

subject to
ş
Ω
z ds ď V

´∇ ¨ pkpzq∇uq “ f in Ω,

u “ 0 in BΩ,
0 ď z ď 1,

(11.6)

where kpzq : Ω Ñ Ω defined by kpzqpsq “ 10´3 ` p1 ´ 10´3qzpsq3 for s P Ω. The domain

is Ω “ r0, 1s2, with load vector f “ 10´2, and V “ 0.4. We discretize (11.6) using finite

elements on a 64 ˆ 64 grid as described by Gersborg-Hansen et al. (2006), resulting in a

problem with 8321 variables and 4096 equality constraints. After discretization, we add a

slack variable s̄ ě 0 for the first inequality constraint, so we have only equality constraints

and bounds. The problem has n “ 8322 variables and m “ 4096 constraints, with bounds

on z and s̄.

We perform the same experiment as in Section 11.3 (using one mesh), with σ “ 10´1 as

the penalty parameter, initial point u0 “ 1
2V �, z0 “ 1

2V �, s̄0 “ V ´ř
zi “ 0.2, and KNITRO

as the minimization algorithm. The results are recorded in Table 11.9. With (11.2a), the

trend is like before: as η increases the number of Jacobian products decreases (and in this

case, so do the numbers of outer iterations and Lagrangian Hessian products), but this is

only true until η becomes too large and the linear solves become too coarse, causing slowed

convergence. With (11.2b) as the termination criterion, we see a similar trend, except that

when the linear solves are too coarse, KNITRO fails to converge.
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Table 11.10: Results for problems with linear constraints (first three rows have only equality
constraints). mlin and mnln are the number of linear and nonlinear constraints; σ‹

impl and
σ‹
expl are threshold penalty parameters when the linear constraints are handled implicitly and

explicitly; σ is the penalty parameter. The last two columns give the number of iterations
before convergence; the symbol ˚ indicates that unboundedness was detected, and – that
100 iterations were performed without converging. The solver exits when unboundedness is
detected or an iterate satisfies (11.1) with � “ 10´8.

Problem n mlin mnln σ‹
impl σ‹

expl σ Impl. Expl.

Chain400 802 402 1 0.0012 0
10´3 ˚ 10
0.002 7 10

Channel400 1600 800 800 0 0
10´3 ´ 5
1 ´ 5

hs113 18 3 5 6.61 3.39
6 ˚ 42
7 28 17

prodpl0 69 25 4 211.9 13.7
40 ´ 43
300 ´ 30

prodpl1 69 25 4 60.8 3.56
10 ´ 22
70 89 41

synthes3 38 23 19 6.00 0.66
2 ´ 12
7 35 18

11.6 Explicit linear constraints

We investigate the effect of maintaining the linear constraints explicitly (Section 9.3), using

some problems from the CUTEst test set (Gould, Orban, and Toint, 2003) with linear

constraints. We use KNITRO to minimize φσ with and without linear constraints, because

it can handle them explicitly. We use the corrected semi-normal equations to perform linear

solves, and Hessian approximation B1pxq (10.14a). The threshold penalty parameters (10.4)

and (9.24) (adapted to bound constraints) are computed from earlier optimal solutions when

the linear constraints were kept implicit (σ‹
impl) and explicit (σ‹

expl) respectively.

In Table 11.10, we observe that maintaining the linear constraints explicitly decreases

the penalty parameter for all problems except Channel400 (σ‹ “ 0 in both cases). KNITRO

fails to find an optimal solution when the linear constraints are implicit and σ ă σ‹
impl. This

is because in the equality-constrained case φσ is unbounded, and otherwise KNITRO stalls

without converging to a feasible solution. When σ is sufficiently large, both versions converge

(with and without explicit constraints); in most cases keeping the constraints requires

fewer iterations, except for Chain400. Although positive semidefiniteness of ∇2φσpx‹q is

guaranteed in the relevant critical cone when σ ą σ‹ (both implicit and explicit cases), a

larger value of σ may sometimes be required because the curvature of φσ away from the

solution may be larger or ill-behaved.

For the Channel problems, the threshold parameter is zero in both cases. However,

KNITRO converges quickly when the linear constraints are kept explicit, but otherwise

fails to converge in a reasonable number of iterations. This phenomenon for the Channel

problems appears to be independent of σ (more values were investigated than are reported

here). Even if the threshold penalty parameter does not decrease, it appears beneficial to

maintain some of the constraints explicitly.
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Table 11.11: Convergence results for hs061 (left) and mss1 (right) when TRON and KNITRO

minimize φσp¨; δq. The first rows show the iteration at which δ is updated, and the last two
rows record the final primal and dual infeasibilities.

δ TRON KNITRO

10´1 22 12
10´2 23 13
10´4 24 14

}cpx̄q} 10´10 10´9

}gσpx̄q} 10´7 10´8

δ TRON KNITRO

10´2 46 33
10´4 52 36
10´7 53 37

}cpx̄q} 10´12 10´14

}gσpx̄q} 10´8 10´9

11.7 Regularization

We next solve problems where Apxq is rank-deficient for some iterates, requiring that φσ be

regularized (Section 5.5). We use the corrected semi-normal equations to solve the linear

systems, with B2pxq as the Hessian approximation.

For problem hs061 (n “ 3 variables, m “ 3 constraints) from the CUTEst test set (Gould

et al., 2003) we use x0 “ 0, σ “ 102, δ0 “ 10´1. For problem mss1 (n “ 90, m “ 73) we use

x0 “ 0, σ “ 103, δ0 “ 10´2. In both cases we decrease δ according to νpδq “ δ2 to retain

local quadratic convergence. For both problems, Apx0q is rank-deficient and φσ is undefined,

so the trust-region solvers terminate immediately. We therefore regularize φσ and record the

iteration at which δ changed. For mss1, we set δmin “ 10´7 to avoid ill-conditioning. The

results are in Table 11.11.

The regularized problems converge with few iterations between δ updates, showing

evidence of quadratic convergence. Note that a large δ can perturb φσp¨; δq substantially, so

that δ0 may need to be chosen judiciously. We use δ0 “ 10´2 because neither TRON nor

KNITRO would converge for mss1 when δ0 “ 10´1.



Chapter 12

Contributions and future directions

We demonstrated that the smooth exact penalty method is a promising approach for nonlin-

early constrained optimization, contrary to existing notions about its practical liminations.

The method is particularly promising when the augmented linear systems (9.19) and (10.16)

can be solved efficiently, for example, for PDE-constrained optimization problems.

12.1 Contributions

Efficient evaluation of the penalty function

We developed an efficient approach to evaluating the penalty function and its derivatives by

solving the same linear system with different right-hand sides. We discussed the tradeoffs of

using various solvers for solving these linear systems, with particular emphasis on the use of

iterative methods in order to develop a factorization-free solver.

Extension to bound constraints

We developed a smooth extension to Fletcher’s penalty function when bound constraints

are present, compared to his original nonsmooth proposal in (8.9). This penalty function

is exact when minimized over the bound constraints. We then showed how to evaluate the

penalty function and its derivatives efficiently when bounds are present.

Extensions to special cases

We extended the penalty function to handle cases where the constraint Jacobian is rank-

deficient away from the solution, and when some of the constraints are simple and can be

kept explicit. When the constraint Jacobian is rank-deficient, we modify the penalty function

to (9.34a). Algorithm 8 shows how to decrease the regularization parameter to zero in such

a way that the overall convergence of the optimization algorithm is unimpeded. If some

of the constraints are easy to maintain explicitly (e.g., linear constraints), we show how to

modify the penalty function so that the threshold penalty parameter is lower. Maintaining

linear constraints explicitly also tends to exhibit better convergence behaviour than when

the constraints are only penalized.

12.2 Future directions

As members of the scientific computing community, we are not in the business of designing the

one algorithm or method that handles all problems better than any other approach. Instead

we aim to develop a suite of tools that efficiently handle as wide a range of problem types

as possible, and gain a deep understanding of the mathematical and numerical properties

of these problems and methods in order to match a problem to the method most likely to

111
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succeed efficiently. This philosophy appears time and time again, just as a method like LSQR

can handle a linear system, yet is likely to be less effective than a specialized method like

CG when said linear system is SPD.

This work is no different: Fletcher’s penalty function demonstrates promise for constrained

optimization problems satisfying a certain paradigm, but is by no means meant to be the

one method to rule them all. However, several of the ideas used throughout this work can be

applied to more general research in optimization; for example, exploiting inexactness, explicit

parametrization of dual variables (such as in extended nonlinear programming (Rockafellar,

2000)), and exploring further applications of smooth exact penalty functions.

There remain several limitations of our approach, and addressing them is the subject of

future work. One property of φσ observed from our experiments is that it is highly nonlinear

and nonconvex; this appears as a root cause of many limitations. Even though superlinear or

quadratic local convergence can be achieved, the high nonlinearity potentially results in many

globalization iterations and small step-sizes. Some extensions include: developing a robust

update for the penalty parameter; improving the solution of the trust-region subproblem;

developing robust tolerance rules for solving the required linear systems; and relaxing (A2a)

to weaker constraint qualifications. We discuss some of these ideas in detail below.

Updating the penalty parameter

As previously mentioned, we do not have a robust approach for updating the penalty

parameter that ensures global convergence and protects iterates from stalling or diverging

(φσ can be unbounded for all σ; x‹ is only guaranteed to be a local minimum). This is

especially important because the threshold parameter is often not known a priori. We

currently use a heuristic that often works in practice, but not in all cases. Mukai and Polak

(1975) develop a scheme for updating the penalty parameter for a variant of Fletcher’s

penalty function, which would be a helpful starting point for developing robust penalty

parameter update rules.

Use as a merit function

One possibility is to use φσ as a merit function (Nocedal and Wright, 2006, §15.4) in

conjunction with a constrained optimization method (e.g., an SQP method), rather than

minimizing it directly. Using φσ as a merit function in a linesearch is probably inefficient

because of repeated evaluation of φσ at different points to determine a stepsize. However,

pure trust-region methods using a merit function to evaluate trial points may show promise

as long as the constrained method guarantees a descent direction for a sufficiently small

trust-region radius. Determining trial points using traditional constrained models (that

require evaluation and derivatives of f and c only) and using φσ only to evaluate trial point

quality may be more efficient than solving subproblems that use derivatives of φσ.

Connections with Sequential Linear Programming

For equality-constrained problems, the definition of the dual multiplier estimate (9.1b) is

closely related to Sequential Linear Programming (SLP) (Palacios-Gomez, Lasdon, and

Engquist, 1982). At the current iterate xk, SLP solves the following linearized subproblem

to determine a search direction:

min
d

fpxkq ` gpxkqTd subject to ApxkqTd ` cpxkq “ 0, }d} ď Δ,
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where Δ ą 0 ensures that the solution is bounded. The dual problem to the multiplier

estimate problem (9.1b) is equivalent to

min
d

σ
2 }d}2 ` gpxkqTd subject to ApxkqTd ` cpxkq “ 0.

Further, the solution of the dual problem is d “ σgσpxkq, the (scaled) gradient of the

Lagrangian evaluated at xk and yσpxkq. These subproblems are nearly identical, and so it

may be possible to use φσ as a merit function for SLP, if for example it can be shown that

the the solution d of either problems is a descent direction for φσ.

Solving the trust-region subproblem

One major improvement would be developing a preconditioning approach for the trust-region

subproblem. This is particularly nontrivial because the (approximate) Hessian is available

only as an operator. Traditional approaches based on incomplete factorizations (Lin and

Moré, 1999a) are not applicable. One possibility is to use a preconditioner for the Lagrangian

Hessian Hσ as a preconditioner for the Hessian approximations Bi (9.17). This may be

effective when m ! n because Hσ and Bi would differ only by a low-rank update; otherwise

Hσ can be a poor approximation to Bi.

Further, products with Bi (9.17) are generally more expensive than typical Hessian-

vector products, as they require solving a linear system. Products with a quasi-Newton

approximation would be significantly faster. Also, exact curvature away from the solution

may be less important than near the solution for choosing good directions; therefore a

hybrid scheme that begins with quasi-Newton and switches to Bi may be effective. Another

strategy, similar to Morales and Nocedal (2000), is to use quasi-Newton approximations to

precondition the trust-region subproblems involving Bi. The approximation for iteration k

can be updated with every Bipxk´1q product, or with every update step xk ´ xk´1.

Inexact Hessian-product trust-region method

Currently there does not exist a Newton-CG trust-region method that allows for variable-

accuracy Hessian-vector products and can guarantee superlinear or quadratic convergence.

Such a method would be similar to the inexact Krylov subspace solvers of (Simoncini and

Szyld, 2003; van den Eshof and Sleijpen, 2004). It would be a useful kernel for inexact

optimization in general, and particularly helpful to solve (PP). The dominant cost in

minimizing φσ is the repeated products with the Hessian approximation Bi (9.17); each of

these products requires solving two linear systems, and solving these systems inexactly results

in an inexact Hessian-vector product. Therefore, a trust-region solver that can prescribe the

accuracy for each Hessian-vector product while guaranteeing fast asymptotic convergence

would substantially improve the performance of this approach.



Appendix A

An unstable SYMMLQ implementation

Just for fun, we introduce a linesearch-based implementation of SYMMLQ in Algorithm 11

that looks similar to the 7-line CG implementation (Hestenes and Stiefel, 1952) and CR

(Stiefel, 1955). We have not found such an implementation elsewhere in literature. Although

this version looks deceptively simple, it is numerically unstable and useless in practice.

Algorithm 11 Unstable SYMMLQ

Require: A, b
1: xL

0 “ 0, r0 “ w0 “ b
2: δ1w1 “ Ab
3: for k “ 1, . . . do

4: ζk “ rTk´1wk´1

δk

5: xL
k “ xk´1 ` ζkwk

6: rk “ rk´1 ´ ζkAwk

7: if k “ 1 then
8: γk “ wT

k Awk

9: δk`1wk`1 “ Awk ´ γkwk

10: else
11: γk “ wT

k Awk

12: δk`1wk`1 “ Awk ´ γkwk ´ δkwk´1

13: end if
14: end for

We can derive Algorithm 11 (in exact arithmetic) from the definition of SYMMLQ iterates:

xL
k :“ argmin

xPRn

}x‹ ´ x}2, with x P KkpA,Abq.

Given an orthonormal basis Wk “
”
w1 ¨ ¨ ¨ wk

ı
for KkpA,Abq and defining xL

k “ Wkzk “
řk

j“1 ζjwj (where zk “ pζ1, . . . , ζkq), we have that for all 1 ď k ď n:

1. ζk “ wT
k x

‹,

2. wT
j x

L
k “ 0 for j ą k, and therefore wT

j px‹ ´ xL
k q “ 0 for j ď k.

To construct the orthonormal basis Wk, we apply the Lanczos process (Algorithm 1) to A

with starting vector Ab. This produces the relation

AWk “ Wk`1

»
———–

γ1 δ2

δ2 γ2
. . .

. . .
. . . δk
δk γk

δk`1

fi
ffiffiffifl, WT

k Wk “ I, δ1w1 “ Ab.
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Figure A.1: Performance of Algorithm 11 on a small random example. After reaching a
reasonably accurate solution, the method diverges.

Thus lines 2–3 and 8–13 of Algorithm 11 describe this Lanczos procedure, which produce

the search directions wk. Lines 6–7 update the iterate xL
k and the current residual using

the search directions and steplength. For k ě 2 (k “ 1 is a special case), by using the

orthonormality of the wk’s, we can express the steplength as

ζk “ wT
k x

‹ “ wT
k px‹ ´ xL

k´1q
“ 1

δk
pAwk´1 ´ γk´1wk´1 ´ δk´1wk´2qT px‹ ´ xL

k´1q
“ 1

δk
wT

k´1Apx‹ ´ xL
k´1q

“ wT
k´1rk´1

δk
,

which matches the expression on line 5.

Even though Algorithm 11 is mathematically equivalent to SYMMLQ, it is numerically

unstable. This is best illustrated with a small example using a small linear system. We take

a random 20 ˆ 20 symmetric matrix A and random right-hand side b, and plot the error

norm (with x‹ “ Azb in Matlab) and residual norm at every iteration in Fig. A.1. After

obtaining a reasonable accurate iterate, the method diverges. This instability likely stems

from the failure of result 2 above. Previous search directions are not orthogogonal with the

current error, yet this is explicitly invoked to derive the expression for ζk. Perhaps it is

possible to modify Algorithm 11 so that it remains stable while keeping the implementation

simple, but for now this algorithm simply remains an intellectual curiousity.



Appendix B

Empirical Check of SYMMLQ and CG

Error Bounds

Table B.1: Empirical check on SYMMLQ error bounds using 140 SPD problems from UFL
Sparse Matrix collection. Each run solves Ax “ �{?

n until �Ck ď 10´10}x‹}, where x‹ is
computed via Matlab’s backslash operator. The second column gives the size of the matrix.
The third column gives the total number of iterations. For each µ P t1 ´ 10´10, 0.1u, we
give two columns; the first indicates the number of iterations where �Lk ď }x‹ ´ xL

k }, and
the second is the fraction between the number of such iterations and the total number of
iterations. The final column gives the condition number of the matrix.

Problem Name n Tot. Iter. µ “ 1 ´ 10´10 µ “ 0.1 κpAq
ACUSIM/Pres Poisson 14822 1784 0 0.000 0 0.000 2.00E+06

Bai/mhd3200b 3200 12800 0 0.000 0 0.000 1.60E+13

Bai/mhd4800b 4800 19200 0 0.000 0 0.000 8.20E+13

Bai/mhdb416 416 1664 0 0.000 0 0.000 4.00E+09

Bates/Chem97ZtZ 2541 150 0 0.000 0 0.000 2.50E+02

Bindel/ted B 10605 544 0 0.000 0 0.000 1.90E+07

Bindel/ted B unscaled 10605 16 0 0.000 0 0.000 1.30E+11

Boeing/bcsstk34 588 1719 0 0.000 0 0.000 2.80E+04

Boeing/bcsstk36 23052 92208 0 0.000 0 0.000 7.40E+11

Boeing/crystm01 4875 7 0 0.000 0 0.000 2.30E+02

Boeing/crystm02 13965 5 0 0.000 0 0.000 2.50E+02

Boeing/crystm03 24696 5 0 0.000 0 0.000 2.60E+02

Boeing/msc00726 726 2351 287 0.122 177 0.075 4.20E+05

Boeing/msc01050 1050 4200 0 0.000 0 0.000 4.60E+15

Boeing/msc01440 1440 5760 0 0.000 0 0.000 3.30E+06

Boeing/msc04515 4515 7302 1685 0.230 1459 0.199 2.30E+06

Boeing/msc10848 10848 43392 0 0.000 0 0.000 1.00E+10

Boeing/msc23052 23052 92208 0 0.000 0 0.000 7.40E+11

Cannizzo/sts4098 4098 16392 0 0.000 0 0.000 2.20E+08

Cylshell/s1rmq4m1 5489 8667 0 0.000 0 0.000 1.80E+06

Cylshell/s1rmt3m1 5489 9348 0 0.000 0 0.000 2.50E+06

Cylshell/s2rmq4m1 5489 21729 0 0.000 0 0.000 1.80E+08

Cylshell/s2rmt3m1 5489 21956 8314 0.378 0 0.000 2.50E+08

Cylshell/s3rmq4m1 5489 21956 1050 0.047 0 0.000 1.80E+10

Cylshell/s3rmt3m1 5489 21956 0 0.000 0 0.000 2.50E+10

Cylshell/s3rmt3m3 5357 21428 0 0.000 0 0.000 2.40E+10

FIDAP/ex10 2410 9640 0 0.000 0 0.000 9.10E+11

FIDAP/ex10hs 2548 10192 0 0.000 0 0.000 5.50E+11

FIDAP/ex13 2568 10272 0 0.000 0 0.000 1.10E+15

FIDAP/ex15 6867 27468 0 0.000 0 0.000 8.60E+12

FIDAP/ex3 1821 7284 0 0.000 0 0.000 1.70E+10

FIDAP/ex33 1733 6932 0 0.000 0 0.000 7.00E+12

FIDAP/ex5 27 75 3 0.040 0 0.000 6.60E+07

FIDAP/ex9 3363 13452 0 0.000 0 0.000 1.20E+13

HB/1138 bus 1138 2479 0 0.000 0 0.000 8.60E+06
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HB/494 bus 494 1425 0 0.000 0 0.000 2.40E+06

HB/662 bus 662 630 0 0.000 0 0.000 7.90E+05

HB/685 bus 685 632 0 0.000 0 0.000 4.20E+05

HB/bcsstk01 48 192 22 0.114 19 0.098 8.80E+05

HB/bcsstk02 66 48 0 0.000 0 0.000 4.30E+03

HB/bcsstk03 112 448 0 0.000 0 0.000 6.80E+06

HB/bcsstk04 132 528 0 0.000 0 0.000 2.30E+06

HB/bcsstk05 153 313 0 0.000 0 0.000 1.40E+04

HB/bcsstk06 420 1680 0 0.000 0 0.000 7.60E+06

HB/bcsstk07 420 1680 0 0.000 0 0.000 7.60E+06

HB/bcsstk08 1074 4296 0 0.000 0 0.000 2.60E+07

HB/bcsstk09 1083 311 23 0.073 17 0.054 9.50E+03

HB/bcsstk10 1086 4344 0 0.000 0 0.000 5.20E+05

HB/bcsstk11 1473 5892 0 0.000 0 0.000 2.20E+08

HB/bcsstk12 1473 5892 0 0.000 0 0.000 2.20E+08

HB/bcsstk13 2003 8012 0 0.000 0 0.000 1.10E+10

HB/bcsstk14 1806 7224 0 0.000 0 0.000 1.20E+10

HB/bcsstk15 3948 15792 0 0.000 0 0.000 6.50E+09

HB/bcsstk16 4884 731 81 0.110 42 0.057 4.90E+09

HB/bcsstk17 10974 38912 4622 0.118 3728 0.095 1.30E+10

HB/bcsstk18 11948 47792 0 0.000 0 0.000 3.50E+11

HB/bcsstk19 817 3268 0 0.000 0 0.000 1.30E+11

HB/bcsstk20 485 1940 0 0.000 0 0.000 3.90E+12

HB/bcsstk21 3600 14400 942 0.065 641 0.044 1.80E+07

HB/bcsstk22 138 460 0 0.000 0 0.000 1.10E+05

HB/bcsstk23 3134 12536 0 0.000 0 0.000 2.60E+12

HB/bcsstk24 3562 14248 0 0.000 0 0.000 1.90E+11

HB/bcsstk25 15439 61756 0 0.000 0 0.000 4.40E+12

HB/bcsstk26 1922 7688 0 0.000 0 0.000 1.70E+08

HB/bcsstk27 1224 1890 0 0.000 0 0.000 2.40E+04

HB/bcsstk28 4410 17640 3283 0.186 0 0.000 9.50E+08

HB/bcsstm02 66 11 0 0.000 0 0.000 8.80E+00

HB/bcsstm05 153 19 0 0.000 0 0.000 1.30E+01

HB/bcsstm06 420 136 0 0.000 0 0.000 3.50E+06

HB/bcsstm07 420 449 0 0.000 0 0.000 7.60E+03

HB/bcsstm08 1074 260 26 0.100 0 0.000 8.30E+06

HB/bcsstm09 1083 1 0 0.000 0 0.000 1.00E+04

HB/bcsstm11 1473 27 0 0.000 0 0.000 1.20E+05

HB/bcsstm12 1473 2899 0 0.000 0 0.000 6.30E+05

HB/bcsstm19 817 872 0 0.000 0 0.000 2.30E+05

HB/bcsstm20 485 548 0 0.000 0 0.000 2.60E+05

HB/bcsstm21 3600 2 0 0.000 0 0.000 2.40E+01

HB/bcsstm22 138 49 0 0.000 0 0.000 9.40E+02

HB/bcsstm23 3134 6533 0 0.000 0 0.000 9.50E+08

HB/bcsstm24 3562 14248 0 0.000 0 0.000 1.80E+13

HB/bcsstm25 15439 61756 0 0.000 0 0.000 6.10E+09

HB/bcsstm26 1922 2084 0 0.000 0 0.000 2.60E+05

HB/gr 30 30 900 41 0 0.000 0 0.000 1.90E+02

HB/lund a 147 474 128 0.270 58 0.122 2.80E+06

HB/lund b 147 442 0 0.000 0 0.000 3.00E+04

HB/nos1 237 948 0 0.000 0 0.000 2.00E+07

HB/nos2 957 3828 0 0.000 0 0.000 5.10E+09

HB/nos3 960 265 0 0.000 0 0.000 3.80E+04

HB/nos4 100 78 0 0.000 0 0.000 1.60E+03

HB/nos5 468 506 0 0.000 0 0.000 1.10E+04

HB/nos6 675 1657 0 0.000 0 0.000 7.70E+06

HB/nos7 729 2916 562 0.192 0 0.000 2.40E+09
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HB/plat362 362 511 0 0.000 0 0.000 2.20E+11

JGD Trefethen/Trefethen 150 150 118 0 0.000 0 0.000 7.70E+02

JGD Trefethen/Trefethen 20 20 19 0 0.000 0 0.000 6.30E+01

JGD Trefethen/Trefethen 200 200 143 0 0.000 0 0.000 1.10E+03

JGD Trefethen/Trefethen 2000 2000 563 0 0.000 0 0.000 1.60E+04

JGD Trefethen/Trefethen 20000 20000 2055 0 0.000 0 0.000 2.00E+05

JGD Trefethen/Trefethen 20000b 19999 1907 0 0.000 0 0.000 9.60E+04

JGD Trefethen/Trefethen 200b 199 133 0 0.000 0 0.000 5.20E+02

JGD Trefethen/Trefethen 20b 19 18 0 0.000 0 0.000 3.00E+01

JGD Trefethen/Trefethen 300 300 185 0 0.000 0 0.000 1.80E+03

JGD Trefethen/Trefethen 500 500 251 0 0.000 0 0.000 3.20E+03

JGD Trefethen/Trefethen 700 700 306 0 0.000 0 0.000 4.70E+03

Lourakis/bundle1 10581 376 40 0.106 17 0.045 1.00E+03

MathWorks/Kuu 7102 559 0 0.000 0 0.000 1.60E+04

MathWorks/Muu 7102 50 0 0.000 0 0.000 7.70E+01

Nasa/nasa1824 1824 7296 0 0.000 0 0.000 1.90E+06

Nasa/nasa2146 2146 603 4 0.006 0 0.000 1.70E+03

Nasa/nasa2910 2910 11640 0 0.000 0 0.000 6.00E+06

Nasa/nasa4704 4704 18816 0 0.000 0 0.000 4.20E+07

ND/nd3k 9000 5046 0 0.000 0 0.000 1.60E+07

ND/nd6k 18000 6211 0 0.000 0 0.000 1.60E+07

Norris/fv1 9604 31 0 0.000 0 0.000 8.80E+00

Norris/fv2 9801 31 0 0.000 0 0.000 8.80E+00

Norris/fv3 9801 121 0 0.000 0 0.000 2.00E+03

Oberwolfach/gyro 17361 48763 19065 0.390 14011 0.287 1.10E+09

Oberwolfach/gyro k 17361 48763 19065 0.390 14011 0.287 1.10E+09

Oberwolfach/gyro m 17361 1096 0 0.000 0 0.000 2.50E+06

Oberwolfach/LF10 18 45 0 0.000 0 0.000 3.90E+06

Oberwolfach/LFAT5 14 30 4 0.133 0 0.000 1.40E+08

Oberwolfach/t2dah e 11445 16763 0 0.000 0 0.000 7.20E+08

Oberwolfach/t2dal e 4257 693 0 0.000 0 0.000 3.80E+07

Oberwolfach/t3dl e 20360 72 0 0.000 0 0.000 6.00E+03

Pajek/Journals 124 200 0 0.000 0 0.000 9.80E+03

Pothen/bodyy4 17546 296 0 0.000 0 0.000 8.10E+02

Pothen/bodyy5 18589 929 0 0.000 0 0.000 7.90E+03

Pothen/bodyy6 19366 2874 0 0.000 0 0.000 7.70E+04

Pothen/mesh1e1 48 23 0 0.000 0 0.000 5.20E+00

Pothen/mesh1em1 48 38 0 0.000 0 0.000 1.90E+01

Pothen/mesh1em6 48 23 0 0.000 0 0.000 6.10E+00

Pothen/mesh2e1 306 133 0 0.000 0 0.000 2.90E+02

Pothen/mesh2em5 306 98 0 0.000 0 0.000 2.50E+02

Pothen/mesh3e1 289 28 0 0.000 0 0.000 8.90E+00

Pothen/mesh3em5 289 18 0 0.000 0 0.000 5.00E+00

Simon/olafu 16146 64584 0 0.000 0 0.000 7.60E+11

Simon/raefsky4 19779 79116 0 0.000 0 0.000 3.10E+13

TKK/cbuckle 13681 7152 0 0.000 0 0.000 3.30E+07

TKK/plbuckle 1282 2279 0 0.000 0 0.000 1.30E+06

UTEP/Dubcova1 16129 103 0 0.000 0 0.000 1.00E+03
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Table B.2: Empirical check on CG error bounds using 140 SPD problems from UFL Sparse
Matrix collection. Each run solves Ax “ �{?

n until �Ck ď 10´10}x‹}, where x‹ is computed
via Matlab’s backslash operator. The second column gives the size of the matrix. The third
column gives the total number of iterations. For each µ P t1 ´ 10´10, 0.1u, we give two
columns; the first indicates the number of iterations where �Ck ď }x‹ ´ xC

k }, and the second
is the fraction between the number of such iterations and the total number of iterations.
The final column gives the condition number of the matrix.

Problem Name n Tot. Iter. µ “ 1 ´ 10´10 µ “ 0.1 κpAq
ACUSIM/Pres Poisson 14822 1784 0 0.000 0 0.000 2.0E+06

Bai/mhd3200b 3200 12800 0 0.000 0 0.000 1.6E+13

Bai/mhd4800b 4800 19200 0 0.000 0 0.000 8.2E+13

Bai/mhdb416 416 1664 0 0.000 0 0.000 4.0E+09

Bates/Chem97ZtZ 2541 150 0 0.000 0 0.000 2.5E+02

Bindel/ted B 10605 544 0 0.000 0 0.000 1.9E+07

Bindel/ted B unscaled 10605 16 0 0.000 0 0.000 1.3E+11

Boeing/bcsstk34 588 1719 0 0.000 0 0.000 2.8E+04

Boeing/bcsstk36 23052 92208 0 0.000 0 0.000 7.4E+11

Boeing/crystm01 4875 7 0 0.000 0 0.000 2.3E+2

Boeing/crystm02 13965 5 0 0.000 0 0.000 2.5E+2

Boeing/crystm03 24696 5 0 0.000 0 0.000 2.6E+2

Boeing/msc00726 726 2351 262 0.111 175 0.074 4.2E+05

Boeing/msc01050 1050 4200 0 0.000 0 0.000 4.6E+15

Boeing/msc01440 1440 5760 0 0.000 0 0.000 3.3E+06

Boeing/msc04515 4515 7302 1687 0.231 1466 0.201 2.3E+06

Boeing/msc10848 10848 43392 0 0.000 0 0.000 1.0E+10

Boeing/msc23052 23052 92208 0 0.000 0 0.000 7.4E+11

Cannizzo/sts4098 4098 16392 0 0.000 0 0.000 2.2E+08

Cylshell/s1rmq4m1 5489 8667 0 0.000 0 0.000 1.8E+06

Cylshell/s1rmt3m1 5489 9348 0 0.000 0 0.000 2.5E+06

Cylshell/s2rmq4m1 5489 21729 0 0.000 0 0.000 1.8E+08

Cylshell/s2rmt3m1 5489 21956 3078 0.140 0 0.000 2.5E+08

Cylshell/s3rmq4m1 5489 21956 0 0.000 0 0.000 1.8E+10

Cylshell/s3rmt3m1 5489 21956 0 0.000 0 0.000 2.5E+10

Cylshell/s3rmt3m3 5357 21428 0 0.000 0 0.000 2.4E+10

FIDAP/ex10 2410 9640 0 0.000 0 0.000 9.1E+11

FIDAP/ex10hs 2548 10192 0 0.000 0 0.000 5.5E+11

FIDAP/ex13 2568 10272 0 0.000 0 0.000 1.1E+15

FIDAP/ex15 6867 27468 0 0.000 0 0.000 8.6E+12

FIDAP/ex3 1821 7284 0 0.000 0 0.000 1.7E+10

FIDAP/ex33 1733 6932 0 0.000 0 0.000 7.0E+12

FIDAP/ex5 27 75 2 0.027 0 0.000 6.6E+07

FIDAP/ex9 3363 13452 0 0.000 0 0.000 1.2E+13

HB/1138 bus 1138 2479 0 0.000 0 0.000 8.6E+06

HB/494 bus 494 1425 0 0.000 0 0.000 2.4E+06

HB/662 bus 662 630 0 0.000 0 0.000 7.9E+05

HB/685 bus 685 632 0 0.000 0 0.000 4.2E+05

HB/bcsstk01 48 192 22 0.115 19 0.099 8.8E+05

HB/bcsstk02 66 48 0 0.000 0 0.000 4.3E+03

HB/bcsstk03 112 448 0 0.000 0 0.000 6.8E+06

HB/bcsstk04 132 528 0 0.000 0 0.000 2.3E+06

HB/bcsstk05 153 313 0 0.000 0 0.000 1.4E+04

HB/bcsstk06 420 1680 0 0.000 0 0.000 7.6E+06

HB/bcsstk07 420 1680 0 0.000 0 0.000 7.6E+06

HB/bcsstk08 1074 4296 0 0.000 0 0.000 2.6E+07

HB/bcsstk09 1083 311 38 0.122 17 0.055 9.5E+03
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HB/bcsstk10 1086 4344 0 0.000 0 0.000 5.2E+05

HB/bcsstk11 1473 5892 0 0.000 0 0.000 2.2E+08

HB/bcsstk12 1473 5892 0 0.000 0 0.000 2.2E+08

HB/bcsstk13 2003 8012 0 0.000 0 0.000 1.1E+10

HB/bcsstk14 1806 7224 0 0.000 0 0.000 1.2E+10

HB/bcsstk15 3948 15792 0 0.000 0 0.000 6.5E+09

HB/bcsstk16 4884 731 223 0.305 43 0.059 4.9E+09

HB/bcsstk17 10974 38912 6918 0.178 3737 0.096 1.3E+10

HB/bcsstk18 11948 47792 0 0.000 0 0.000 3.5E+11

HB/bcsstk19 817 3268 0 0.000 0 0.000 1.3E+11

HB/bcsstk20 485 1940 0 0.000 0 0.000 3.9E+12

HB/bcsstk21 3600 14400 923 0.064 616 0.043 1.8E+07

HB/bcsstk22 138 460 0 0.000 0 0.000 1.1E+05

HB/bcsstk23 3134 12536 0 0.000 0 0.000 2.6E+12

HB/bcsstk24 3562 14248 0 0.000 0 0.000 1.9E+11

HB/bcsstk25 15439 61756 0 0.000 0 0.000 4.4E+12

HB/bcsstk26 1922 7688 0 0.000 0 0.000 1.7E+08

HB/bcsstk27 1224 1890 0 0.000 0 0.000 2.4E+04

HB/bcsstk28 4410 17640 515 0.029 0 0.000 9.5E+08

HB/bcsstm02 66 11 0 0.000 0 0.000 8.8E+00

HB/bcsstm05 153 19 0 0.000 0 0.000 1.3E+01

HB/bcsstm06 420 136 0 0.000 0 0.000 3.5E+06

HB/bcsstm07 420 449 0 0.000 0 0.000 7.6E+03

HB/bcsstm08 1074 260 15 0.058 0 0.000 8.3E+06

HB/bcsstm09 1083 1 0 0.000 0 0.000 1.0E+04

HB/bcsstm11 1473 27 0 0.000 0 0.000 1.2E+05

HB/bcsstm12 1473 2899 0 0.000 0 0.000 6.3E+05

HB/bcsstm19 817 872 3 0.003 0 0.000 2.3E+05

HB/bcsstm20 485 548 0 0.000 0 0.000 2.6E+05

HB/bcsstm21 3600 2 0 0.000 0 0.000 2.4E+01

HB/bcsstm22 138 49 0 0.000 0 0.000 9.4E+02

HB/bcsstm23 3134 6533 0 0.000 0 0.000 9.5E+08

HB/bcsstm24 3562 14248 0 0.000 0 0.000 1.8E+13

HB/bcsstm25 15439 61756 0 0.000 0 0.000 6.1E+09

HB/bcsstm26 1922 2084 0 0.000 0 0.000 2.6E+05

HB/gr 30 30 900 41 0 0.000 0 0.000 1.9E+02

HB/lund a 147 474 134 0.283 59 0.124 2.8E+06

HB/lund b 147 442 0 0.000 0 0.000 3.0E+04

HB/nos1 237 948 0 0.000 0 0.000 2.0E+07

HB/nos2 957 3828 0 0.000 0 0.000 5.1E+09

HB/nos3 960 265 0 0.000 0 0.000 3.8E+04

HB/nos4 100 78 0 0.000 0 0.000 1.6E+03

HB/nos5 468 506 0 0.000 0 0.000 1.1E+04

HB/nos6 675 1657 0 0.000 0 0.000 7.7E+06

HB/nos7 729 2916 294 0.101 0 0.000 2.4E+09

HB/plat362 362 511 0 0.000 0 0.000 2.2E+11

JGD Trefethen/Trefethen 150 150 118 0 0.000 0 0.000 7.7E+02

JGD Trefethen/Trefethen 20 20 19 0 0.000 0 0.000 6.3E+01

JGD Trefethen/Trefethen 200 200 143 0 0.000 0 0.000 1.1E+03

JGD Trefethen/Trefethen 2000 2000 563 0 0.000 0 0.000 1.6E+04

JGD Trefethen/Trefethen 20000 20000 2055 0 0.000 0 0.000 2.0E+05

JGD Trefethen/Trefethen 20000b 19999 1907 0 0.000 0 0.000 9.6E+04

JGD Trefethen/Trefethen 200b 199 133 0 0.000 0 0.000 5.2E+02

JGD Trefethen/Trefethen 20b 19 18 0 0.000 0 0.000 3.0E+01

JGD Trefethen/Trefethen 300 300 185 0 0.000 0 0.000 1.8E+03

JGD Trefethen/Trefethen 500 500 251 0 0.000 0 0.000 3.2E+03

JGD Trefethen/Trefethen 700 700 306 0 0.000 0 0.000 4.7E+03
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Lourakis/bundle1 10581 376 35 0.093 17 0.045 1.0E+03

MathWorks/Kuu 7102 559 0 0.000 0 0.000 1.6E+04

MathWorks/Muu 7102 50 0 0.000 0 0.000 7.7E+01

Nasa/nasa1824 1824 7296 0 0.000 0 0.000 1.9E+06

Nasa/nasa2146 2146 603 1 0.002 0 0.000 1.7E+03

Nasa/nasa2910 2910 11640 0 0.000 0 0.000 6.0E+06

Nasa/nasa4704 4704 18816 0 0.000 0 0.000 4.2E+07

ND/nd3k 9000 5046 0 0.000 0 0.000 1.6E+07

ND/nd6k 18000 6211 0 0.000 0 0.000 1.6E+07

Norris/fv1 9604 31 0 0.000 0 0.000 8.8E+00

Norris/fv2 9801 31 0 0.000 0 0.000 8.8E+00

Norris/fv3 9801 121 0 0.000 0 0.000 2.0E+03

Oberwolfach/gyro 17361 48763 18101 0.371 13997 0.287 1.1E+09

Oberwolfach/gyro k 17361 48763 18101 0.371 13997 0.287 1.1E+09

Oberwolfach/gyro m 17361 1096 0 0.000 0 0.000 2.5E+06

Oberwolfach/LF10 18 45 0 0.000 0 0.000 3.9E+06

Oberwolfach/LFAT5 14 30 2 0.067 0 0.000 1.4E+08

Oberwolfach/t2dah e 11445 16763 0 0.000 0 0.000 7.2E+08

Oberwolfach/t2dal e 4257 693 0 0.000 0 0.000 3.8E+07

Oberwolfach/t3dl e 20360 72 0 0.000 0 0.000 6.0E+03

Pajek/Journals 124 200 0 0.000 0 0.000 9.8E+03

Pothen/bodyy4 17546 296 0 0.000 0 0.000 8.1E+02

Pothen/bodyy5 18589 929 0 0.000 0 0.000 7.9E+03

Pothen/bodyy6 19366 2874 0 0.000 0 0.000 7.7E+04

Pothen/mesh1e1 48 23 0 0.000 0 0.000 5.2E+00

Pothen/mesh1em1 48 38 0 0.000 0 0.000 1.9E+01

Pothen/mesh1em6 48 23 0 0.000 0 0.000 6.1E+00

Pothen/mesh2e1 306 133 0 0.000 0 0.000 2.9E+02

Pothen/mesh2em5 306 98 0 0.000 0 0.000 2.5E+02

Pothen/mesh3e1 289 28 0 0.000 0 0.000 8.9E+00

Pothen/mesh3em5 289 18 0 0.000 0 0.000 5.0E+00

Simon/olafu 16146 64584 0 0.000 0 0.000 7.6E+11

Simon/raefsky4 19779 79116 0 0.000 0 0.000 3.1E+13

TKK/cbuckle 13681 7152 0 0.000 0 0.000 3.3E+07

TKK/plbuckle 1282 2279 0 0.000 0 0.000 1.3E+06

UTEP/Dubcova1 16129 103 0 0.000 0 0.000 1.0E+03
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Direct methods for augmented systems

We describe various direct methods for solving (10.16)

«
I A

AT ´δ2I

ff «
p

q

ff
“

«
w

z

ff
, where K “

«
I A

AT ´δ2I

ff
, (C.1)

required to evaluate φσ and its derivatives. Recall that Aδ “
”
AT δI

ıT
when δ ą 0;

otherwise Aδ “ A. For this section, given a matrix R and vector b, the shorthand notation

x Ð Rzb means that x solves the system Rx “ b (via forward and/or backward substitution).

QR factorization

Algorithm 12 computes pp, qq using the thin QR factorization of Aδ “ QR, with Q orthogonal

and R P Rmˆm.

Algorithm 12 Solving (10.16) using the QR factorization.

1: Q, R Ð qrpAδq
2: w̄ Ð QT

1:n,:w

3: z̄ Ð RT zz
4: p Ð w ´ Q1:n,:pw̄ ´ z̄q
5: q Ð Rzpw̄ ´ z̄q
6: return pp, qq

The advantage is that Aδ is factorized instead of K, and this method is backward stable

for both p and q (Golub and Van Loan, 2013, §5.3.6). If Aδ is sparse, R is likely to be sparse

(for some column permutation of Aδ) but unfortunately Q is not. For large problems, it may

not be practical to store Q in order to solve (10.16).

Corrected semi-normal equations

The R factor from Aδ “ QR can be computed without storing Q. We can then solve the

semi-normal equations RTRq “ ATw ´ z and set p “ w ´ Aq. Björck and Paige (1994) show

that this is not acceptable-error stable for p, possibly giving large error in p, particularly

when }p} ! }w}. Note that p “ gσ in (10.13) means we may obtain large errors in the

gradient near the solution if care is not taken. Fortunately, Björck and Paige (1994) show

that one step of iterative refinement ensures p is acceptable-error stable; see Algorithm 13.
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Algorithm 13 Solving (10.16) using the semi-normal equations.

1: R Ð qrpAδq
2: q Ð pRTRqzpATw ´ zq p Ð w ´ Aq

3: Δq Ð pRTRqzpATp ´ δ2q ´ zq Ź Iterative refinement

4: q Ð q ` Δq p Ð p ´ AΔq

5: return pp, qq

LDL and Bunch-Kaufman factorization

When it is not practical to store Q from the QR factors of A, or the semi-normal equations do

not provide sufficient accuracy, it may be possible to compute the LDL or Bunch-Kaufman

factorization of K directly. Although an pn ` mq ˆ pn ` mq matrix is factorized (rather than

an n ˆ m matrix), the entire factorization is likely to be sparse, and the solution is typically

more accurate than with the semi-normal equations.

Björck (1967) and Saunders (1995) discuss scaling of the p1, 1q identity block to improve

the condition number of K. Saunders (1995) also considers the case where K is regularized

with ´δ2I in the p2, 2q block.



Appendix D

Proof of Theorem 9.13

We repeat the assumptions of Theorem 9.13:

(B1) (NP) satisfies (A1b) and (A2a).

(B2) x‹ is a second-order KKT point for (NP) satisfying ∇2φσpx‹q ą 0.

(B3) There exist δ̄ ą 0 and an open set Bpx‹q containing x‹ such that if rx0 P Bpx‹q and

δ ď δ̄, the sequence rxk`1 “ rxk ` Gpφσp¨; δq, rxkq converges quadratically to xpδq with

constant M independent of δ.

Lemma D.1 Under the assumptions of Theorem 9.13:

1. φσp¨; δq has two continuous derivatives for δ ą 0 and x P Rn by (B1).

2. There exists an open set B1px‹q containing x‹ such that φσpxq is well-defined and has

two continuous derivatives for all x P B1px‹q by (B1).

3. ∇2φσpx‹q “ ∇2φσpx‹; 0q ą 0 and φσpx; δq is second-order smooth in both x and δ, so

by assumption (B2) there exists an open set B2px‹q containing x‹ and rδ ą 0 such that

∇2φσpx; δq ą 0 for px, δq P B2px‹q ˆ r0, rδs.

4. By Theorem 9.10, there exists δ̂ such that for δ ď δ̂, xpδq is continuous in δ. Therefore

there exists an open set B3px‹q such that xpδq P B3px‹q for δ ď δ̂.

5. There exists a neighborhood B4px‹q where Newton’s method is quadratically convergent

(with factor N) on φσpxq by (B2).

6. Given δ0 ď δ̄, where δ̄ is defined in (B3), there exists a neighborhood B5px‹q such that

}∇φσpx; δ0q} ď δ0 for all x P B5px‹q.
We define

B1px‹q :“ Bpx‹q X
˜

5č

i“1

Bipx‹q
¸

and δ1 :“ mintδ̄, rδ, δ̂, 1u,

and note that xk defined by Algorithm 8 satisfies xk P B1px‹q for all k by (B3). Because

φσpx; δq is a C2 function in B1px‹q ˆ r0, δ1s, there exist positive constants K1, . . . ,K5 such

that

7. }∇φσpx; δq} ď K1, }∇2φσpx; δq´1} ď K2 for x P B1px‹q and δ ď δ1;

8. }∇Pδpxq} ď K3, }∇2Pδpxq} ď K4 for x P B1px‹q and δ ď δ1;

9. }xk ´ x‹} ď K5}∇φσpxkq}.
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Proof. Statements 1–2 follow from (B1). Statements 3 and 5 follow from (B2). Statement 4

follows from Theorem 9.10.

Now consider Statement 6. For a given δ0, we have ∇φσpxpδ0q; δ0q “ 0 and so there

exists a neighbourhood rB around xpδ0q such that }∇φσpx; δ0q} ď δ0 for all x P rB. Further,

xpδ0q P B3px‹q, so let B5px‹q “ rB X B3px‹q.

We first give some technical results. All assume that xk P B1px‹q and δk ď δ1.

Lemma D.2 Assume δk´1 ď δ0 ď δ1. For δk defined according to (9.36),

}∇φσpxk; δkq} “ Opδkq.

Proof. The result holds for k “ 1 in view of observation 6 of Lemma D.1.

Because xk P B1px‹q and δk, δk´1 ď δ1, observation 8 of Lemma D.1 gives }∇Pδk´1
pxkq} ď

K3 and }∇Pδkpxkq} ď K3. Using (9.35), we have

}∇φσpxk; δkq} “ }∇φσpxk; δk´1q ´ δ2k´1∇Pδk´1
pxkq ` δ2k∇Pδkpxkq}

ď }∇φσpxk; δk´1q} ` δ2k´1}∇Pδk´1
pxkq} ` δ2k}∇Pδkpxkq}

ď }∇φσpxk; δk´1q} ` pδ2k´1 ` δ2kqK3

“ }∇φσpxk; δk´1q} ` Opδkq, (D.1)

where the last inequality follows from δ2k ď δk and (9.36), implying that δk ě νpδk´1q “ δ2k´1.

We consider two cases. If }∇φσpxk; δk´1q} ď δk´1, (9.36) implies that

δk “ maxp}∇φσpxk; δk´1q}, δ2k´1q ě }∇φσpxk; δk´1q},

and therefore (D.1) gives }∇φσpxk; δkq} “ Opδkq.
Otherwise, (9.36) yields δk “ maxpδk´1, δ

2
k´1q “ δk´1, and there exists � ď k ´ 1 such

that δk “ δk´1 “ ¨ ¨ ¨ “ δ� ă δ�´1, or � “ 1. If δ� ă δ�´1, step 3 of Algorithm 8 implies

that }∇φσpx�; δ�´1q} ă δ�´1, which by the above sequence of inequalities implies that

}∇φσpx�; δ�q} “ Opδ�q. Then, because δk “ δ�,

}∇φσpx�, δkq} “ }∇φσpx�, δ�q} “ Opδ�q “ Opδkq.

Define the sequence trxju with rx0 “ x� and rxj`1 “ rxj `Gpφσp¨; δ�q, rxjq. By (B3), rxj Ñ xpδ�q
quadratically, so after j iterations of this procedure, for some ĂM , we have

}∇φσprxj ; δkq} ď ĂM j}∇φσprx0; δkq}2j ď ĂM jK2j´1

1 }∇φσprx0; δkq}2.

Then after j “ Op1q iterations of this procedure (depending only on ĂM and K1), we have
ĂM jK2j´1

1 ď 1, so that

}∇φσprxj ; δkq} ď }∇φσprx0; δkq}2 “ }∇φσpx�; δkq}2 “ Opδ2kq ă δk.

Therefore, k ´ � ď j “ Op1q, and by (B3),

}∇φσpxk; δk´1q} “ O
´
Mk´�}∇φσpx�; δk´1q}2k´�

¯
“ O

´
Mk´�δ2

k´�

k

¯
“ Opδkq.
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Lemma D.3 For pk defined by step 4 of Algorithm 8, }pk} “ Opδkq.

Proof. According to (B3), we may apply Lemma 9.12 with τ “ 2 and view step 4 of

Algorithm 8 as an inexact-Newton step, i.e., there exists a constant N2 ą 0 such that

∇2φσpxk; δkqpk “ ´∇φσpxk; δkq ` rk, }rk} ď N2}∇φσpxk; δkq}2.

Therefore by Lemma D.2,

}pk} “ }∇2φσpxk; δkq´1p´∇φσpxk; δkq ` rkq}
ď }∇2φσpxk; δkq´1} p}∇φσpxk; δkq} ` }rk}q
ď K2

`}∇φσpxk; δkq} ` N2}∇φσpxk; δkq}2˘

ď K2

`
Opδkq ` Opδ2kq˘ “ Opδkq.

Lemma D.4 Let pk be defined by step 4 of Algorithm 8 and qk be the Newton direction

for the unregularized penalty function defined by ∇2φσpxkqqk “ ´∇φσpxkq. Then }pk ´ qk} P
Opδ2kq.

Proof. According to (B3), we may apply Lemma 9.12 with τ “ 2 and view step 4 of

Algorithm 8 as an inexact-Newton step, i.e.,

∇2φσpxk; δkqpk “ ´∇φσpxk; δkq ` rk, (D.2a)

}rk} “ Op}∇φσpxk; δkq}2q. (D.2b)

We premultiply (D.2a) by ∇2φσpxkq´1 and use (9.35) to obtain

pk ` δ2k∇2φσpxkq´1∇2Pδkpxkqpk “ qk ` δ2k∇2φσpxkq´1∇Pδkpxkq ` ∇2φσpxkq´1rk.

Lemma D.2, Lemma D.3 and the triangle inequality then yield

}pk ´ qk} “ ››δ2k∇2φσpxkq´1
`
∇Pδkpxkq ´ ∇2Pδkpxkqpk

˘ ` ∇2φσpxkq´1rk
››

ď δ2k}∇2φσpxkq´1} `}∇Pδkpxkq} ` }∇2Pδkpxkqpk}˘ ` }∇2φσpxkq´1rk}
ď δ2kK2 pK3 ` Opδkqq ` Opδ2kq “ Opδ2kq.

Using the previous technical results, we are in position to establish our main result.

Proof of Theorem 9.13. We show that for x0 P B1px‹q we achieve R-quadratic conver-

gence, by showing that }xk ´ x‹} “ Opδkq and that δk Ñ 0 quadratically. By observation 9

of Lemma D.1, (9.35), the triangle inequality, Lemma D.2, and observation 8 of Lemma D.1,

we have

}xk ´ x‹} ď K5}∇φσpxkq}
“ K5}∇φσpxk; δkq ´ δ2k∇Pδkpxkq}
ď K5p}∇φσpxk; δkq} ` δ2k}∇Pδkpxkq}q
ď K5

`
Opδkq ` δ2kK3

˘ “ Opδkq.
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Let qk be the Newton direction defined in Lemma D.4. There exists a constant N ą 0 such

that

}xk`1 ´ x‹} “ }xk ` pk ´ x‹}
ď }xk ` qk ´ x‹} ` }pk ´ qk}
ď N}xk ´ x‹}2 ` }pk ´ qk} “ Opδ2kq.

It remains to show that δk decreases quadratically. If }∇φσpxk`1, δkq} ď δ2k,

δk`1 “ maxtmint}∇φσpxk`1, δkq}, δku, δ2ku ď maxt}∇φσpxk`1, δkq}, δ2ku “ δ2k.

Assume now that }∇φσpxk`1, δkq} ą δ2k. We have from (9.35) and observations 7–8 of

Lemma D.1 that

δk`1 “ maxtmint}∇φσpxk`1, δkq}, δku, δ2ku
ď }∇φσpxk`1, δkq}
ď }∇φσpxk`1q} ` δ2k}∇P 2

δk
pxk`1q}

ď K´1
2 }xk`1 ´ x‹} ` δ2kK3 “ Opδ2kq.

Thus we have }xk ´ x‹} “ Opδkq and δk`1 “ Opδ2kq, which means that xk Ñ x‹ R-

quadratically.
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